Study of the Weld Zone of Friction Welded C45/1.3344PM Dissimilar Steel Joints

Author(s):  
Erdinc Kaluc ◽  
Emel Taban
Author(s):  
Junliang Xue ◽  
Peng Peng ◽  
Wei Guo ◽  
Mingsheng Xia ◽  
Caiwang Tan ◽  
...  

AbstractThe QP980-DP980 dissimilar steel joints were fabricated by fiber laser welding. The weld zone (WZ) was fully martensitic structure, and heat-affected zone (HAZ) contained newly-formed martensite and partially tempered martensite (TM) in both steels. The super-critical HAZ of the QP980 side had higher microhardness (~ 549.5 Hv) than that of the WZ due to the finer martensite. A softened zone was present in HAZ of QP980 and DP980, the dropped microhardness of softened zone of the QP980 and DP980 was Δ 21.8 Hv and Δ 40.9 Hv, respectively. Dislocation walls and slip bands were likely formed at the grain boundaries with the increase of strain, leading to the formation of low angle grain boundaries (LAGBs). Dislocation accumulation more easily occurred in the LAGBs than that of the HAGBs, which led to significant dislocation interaction and formation of cracks. The electron back-scattered diffraction (EBSD) results showed the fraction of LAGBs in sub-critical HAZ of DP980 side was the highest under different deformation conditions during tensile testing, resulting in the failure of joints located at the sub-critical HAZ of DP980 side. The QP980-DP980 dissimilar steel joints presented higher elongation (~ 11.21%) and ultimate tensile strength (~ 1011.53 MPa) than that of DP980-DP980 similar steel joints, because during the tensile process of the QP980-DP980 dissimilar steel joint (~ 8.2% and 991.38 MPa), the strain concentration firstly occurred on the excellent QP980 BM. Moreover, Erichsen cupping tests showed that the dissimilar welded joints had the lowest Erichsen value (~ 5.92 mm) and the peak punch force (~ 28.4 kN) due to the presence of large amount of brittle martensite in WZ and inhomogeneous deformation.


1996 ◽  
Vol 15 (4) ◽  
pp. 360-362 ◽  
Author(s):  
M. Yilmaz ◽  
E. Kaluc ◽  
K. T�lbentci ◽  
S. Karag�z

Author(s):  
Jianguo Deng ◽  
Zhiyuan Liang ◽  
Shi’en Hui ◽  
Qinxin Zhao

AbstractThe effect of aging treatment on the microstructures and mechanical properties of new groove T92/Super 304H dissimilar steel joints is studied in this paper. The experimental results show that the heat-affected zone (HAZ) of T92 is mainly composed of coarse-grained and fine-grained martensitic, whereas the microstructure of Super 304H HAZ and weld seam exhibit an austenitic structure. Aging treatment increases the nucleation and growth of second phase particles of the weld joints, especially at T92 side. The weld joints have a low tensile strength (<700 Mpa) and a high tensile strength (>700 Mpa) when the tensile fractures are located at weld seam and T92 base metal, respectively. With increasing aging time, the hardness and tensile strength of the weld joints initially decrease, then increase, and finally stabilize. Moreover, the weld joints have a maximum hardness value at the T92 heat-affected zone. At room temperature condition, the impact absorbed energy reaches the minimum value, which is related to the coarse grain containing equiaxed dendrites in the weld seam.


2020 ◽  
Vol 92 (2) ◽  
pp. 15-23
Author(s):  
Jacek Tomków ◽  
Jacek Haras

The paper presents the results of non-destructive and destructive tests od dissimilar high-strength low-alloy S460ML and S460N butt joints. These steels are characterized by similar mechanical properties, but their carbon equivalent CeIIW is much different. The joints were made using different values of heat input for each welding bead. They were tested by non-destructive methods: visual, penetrant, radiographic and ultrasonic tests. Then, the destructive tests were made: static tensile test, bending test, impact test and Vickers HV10 hardness measurements. The results of prepared examinations showed, that welding with higher heat input has significant impact on the mechanical properties of the dissimilar steel joints – the joint welded with bigger heat input was characterized by better mechanical properties.


1998 ◽  
Vol 3 (4) ◽  
pp. 177-189 ◽  
Author(s):  
G. Çam ◽  
Ç. Yeni ◽  
S. Erim ◽  
V. Ventzke ◽  
M. Koçak

Sign in / Sign up

Export Citation Format

Share Document