Interfaces in non-oxide ceramic composites

2006 ◽  
pp. 461-490
Author(s):  
S TURAN ◽  
K M KNOWLES
2019 ◽  
Vol 809 ◽  
pp. 140-147 ◽  
Author(s):  
Maike Böttcher ◽  
Daisy Nestler ◽  
Jonas Stiller ◽  
Lothar Kroll

Ceramic materials are suitable for use in the high temperature range. Oxide ceramics, in particular, have a high potential for long-term applications under thermal cycling and oxidising atmosphere. However, monolithic oxide ceramics are unsuitable for use in high-temperature technical applications because of their brittleness. Thin-walled, oxidation resistant, and high-temperature resistant materials can be developed by reinforcing oxide ceramics with ceramic fibres such as alumina fibres. The increase of the mechanical stability of the composites in comparison to the non-fibre reinforced material is of outstanding importance. Possible stresses or cracks can be derived along the fibre under mechanical stress or deformation. Components made of fibre-reinforced ceramic composites with oxide ceramic matrix (OCMC) are currently produced in manual and price-intensive processes for small series. Therefore, the manufacturing should be improved. The ceramic injection moulding (CIM) process is established in the production of monolithic oxide ceramics. This process is characterised by its excellent automation capability. In order to realise large scale production, the CIM-process should be transferred to the production of fibre-reinforced oxide ceramics. The CIM-process enables the production of complicated component shapes and contours without the need for complex mechanical post-treatment. This means that components with complex geometries can be manufactured in large quantities.To investigate the suitability of the injection moulding process for the production of OCMCs, two different feedstocks and alumina fibres (Nextel 610) were compounded in a laboratory-scale compounder. The fibre volume fractions were varied. In a laboratory-scale injection moulding device, microbending specimens were produced from the compounds obtained in this way. To characterise the test specimens, microstructure examinations and mechanical-static tests were done. It is shown that the injection moulding process is suitable for the production of fibre-reinforced oxide ceramics. The investigations show that the feedstocks used have potential for further research work and for future applications as material components for high-temperature applications in oxidising atmospheres.


2019 ◽  
Vol 799 ◽  
pp. 131-135
Author(s):  
Kristjan Juhani ◽  
Jakob Kübarsepp ◽  
Marek Tarraste ◽  
Jüri Pirso ◽  
Mart Viljus

Reactive sintering is a process where synthesis reaction of the ceramic phases is combined with sintering (densification) of the composite. Dense lightweight titanium oxycarbide-aluminium oxide ceramic-ceramic composites were produced from titanium dioxide, carbon black as graphite source and aluminium precursors by high energy attritor milling, followed by reactive sintering. Titanium oxycarbide and aluminium oxide phases were synthesized during reactive sintering in situ. To investigate the microstructure evolution and phase formation, the specimens were sintered at different temperatures (600-1725 °C) in vacuum. Scanning electron microscopy and X-ray diffraction were used to analyze the microstructure and phase formation. Mechanical performance (hardness and fracture toughness) was evaluated.


2018 ◽  
Vol 102 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Renato S. M. Almeida ◽  
Tamires F. S. Pereira ◽  
Kamen Tushtev ◽  
Kurosch Rezwan

1993 ◽  
Vol 327 ◽  
Author(s):  
Theodore M. Besmann ◽  
David P. Stinton ◽  
Richard A. Lowden

AbstractContinuous fiber ceramic composites are enabling new, high temperature structural applications. Chemical vapor infiltration methods for producing these composites are being investigated, with the complexity of filament weaves and deposition chemistry merged with standard heat and mass transport relationships. Silicon carbide-based materials are, by far, the most mature, and are already being used in aerospace applications. This paper addresses the state-of-the art of the technology and outlines current issues.


2014 ◽  
Vol 798-799 ◽  
pp. 383-388 ◽  
Author(s):  
Eduardo Sousa Lima ◽  
A.P.O. Santos ◽  
L.M. Itaboray ◽  
C. Santos ◽  
R.F. Cabral

YAG (Y3Al5O12) and Al2O3 ceramics have high resistance to oxidation and corrosion in harsh environments and high temperatures, which turns into a quite attractive material as compared to other ceramics. Thus, lately oxide ceramic YAG has been extensively used as reinforcement phase to Al2O3 in order to obtain a composite with improved mechanical properties. This research focused on the development of sintered Al2O3-Y2O3 powder mixtures for the production of Al2O3-YAG composite. Powder mixtures composed of 63.65:36.35wt.% and 80.00:20.00wt.% of Al2O3 and Y2O3, respectively, were milled by planetary milling for 2h. The compositions were compacted by cold uniaxial pressing, at 70 MPa, for 30s. The two mixtures were sintered at 1500 and 1600°C for 3h. The samples were evaluated for relative density, shrinkage, weight loss, and X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM) was used for microstructural characterization. The X-Ray Diffraction showed the presence of Al2O3 and Y3Al5O12 as crystalline phases in both compositions. Samples composed by 80:20wt.% of Al2O3/Y2O3 powder sintered at 16000C-3h presented the higher relative density ranging around 86% of theoretical density.


Sign in / Sign up

Export Citation Format

Share Document