Challenges in fire testing: reaction to fire tests and assessment of fire toxicity

Author(s):  
T.R. Hull
Keyword(s):  
2018 ◽  
Vol 163 ◽  
pp. 07004 ◽  
Author(s):  
Wojciech Węgrzyński ◽  
Piotr Turkowski

The origins of standardised fire testing can be traced back to 1870’s, and the origin of the standard temperature-time curve to 1917. This approach, based on a 19th-century intuition is still in use up to this day, to design the 21st-century structures. Standardized fire-testing ultimately disregards the conservation of energy in the fire, as in every test the resulting temperature of the test must be the same (precisely as the temp.-time curve). To maintain this, different amount of heat is required in every test, which means that every time a different fire is modelled within the furnace. The differences between furnace fire sizes are ignored in the certification process, but can be interesting for fire researchers to understand how different materials behave in fire conditions. In this paper, Authors explore this topic by investigating the energy balance within the furnace, and comparing different fire tests together.


2012 ◽  
Vol 628 ◽  
pp. 156-160
Author(s):  
In Kyu Kwon ◽  
Hyung Jun Kim ◽  
Heung Youl Kim ◽  
Bum Yean Cho ◽  
Kyung Suk Cho

Structural steel has been used since the early 1970’s in Korea as primary structural members such as columns, beams, and trusses. The materials have much higher strength such as fast construction, high load bearing capacity, high construction quality but those have a fatal weakness as well. Load-bearing capacity is going down when the structural members are contained in fire condition. Therefore, to protect the structural members made of steels from the heat energy the fire resistance performance required. Generally, the fire resistance performance have evaluated from the exact fire tests in fire furnaces. But the evaluation method takes much more time and higher expenses so, the engineering method requires. The engineering method not only adopts a science but also an engineering experience. In this paper, to make various data-bases for evaluation of structural members such as columns(H-section, RHS), beams, loaded fire tests were conducted and derived not only each limiting temperature but also fire resistance respectively.


2012 ◽  
Vol 249-250 ◽  
pp. 1057-1062
Author(s):  
M. Zeinoddini ◽  
S.A. Hosseini ◽  
M. Daghigh ◽  
S. Arnavaz

Previous researchers have tried to predict the response of different types of structures under elevated temperatures. The results are important in preventing the collapse of buildings in fire. Post-fire status of the structures is also of interest for ensuring the safety of rescue workers during the fire and in the post-fire situations. Determining the extent of the structural damage left behind a fire event is necessary to draw up adequate repair plans. Connections play an important role on the fire performance of different structures. Due to the high cost of fire tests, adequate experimental data about a broad range of connections is not available. A vulnerable type of such connections to fire is the weld connections between I-shape beams and cylindrical columns in oil platform topsides. Considering the high probability of fire in oil platforms, study of the behaviour of these connections at elevated temperatures and in the post-fire, is of great importance. In the current study, eight small scale experimental fire tests on welded connections between I-shape beams and cylindrical columns have been conducted. Four tests are aimed at investigating the structural performance of this connection at elevated temperature. In other tests, post-fire behaviour of these connections has been studied to investigate their residual structural strength.


2016 ◽  
Vol 53 (3) ◽  
pp. 1309-1331 ◽  
Author(s):  
Sergio Sánchez-Carballido ◽  
Celeste Justo-María ◽  
Juan Meléndez ◽  
Fernando López

2008 ◽  
Vol 2 (1) ◽  
pp. 005-018
Author(s):  
Zoja Bednarek ◽  
Paweł Ogrodnik

The article presents results from the research into fire temperature influence on steel-concrete bond and on the bond reduction for both in-fire and after-fire status. Bond tests and its results for materials St3S, 18G2 reinforced steel and C16/20, C40/50 concrete, have been described in the article both for in fire and after-fire conditions. All tests have shown a significant reduction of steel-concrete bond as a result of fire temperature. It was proven, that significant bond differences exist between in-fire and after-fire tests, what demonstrate that the bond is regained partially after the exposure.


2015 ◽  
Vol 21 (3) ◽  
pp. 86-93
Author(s):  
GHEORGHIŢA TOMESCU ◽  
RADU IATAN ◽  
IULIANA IAŞINICU (STAMATE)

The fire safe valves are designed for petroleum and petrochemical complexes and allied industries because working fluid characteristics result in a high fire risk, detonation and / or explosion. Fire Safe Certification is achieved through a standardized fire testing. This article aims to show how to optimize the shape and size of the main body of a ball valve in sequence CAD – FEM - testing and evaluation of the performance of valves when exposed to fire. This analysis is necessary because fire testing is expensive to verify and the validation of constructive solutions helps reduce production costs and achieve fire prevention through design.


Sign in / Sign up

Export Citation Format

Share Document