scholarly journals Research into steel-concrete bond in fire conditions

2008 ◽  
Vol 2 (1) ◽  
pp. 005-018
Author(s):  
Zoja Bednarek ◽  
Paweł Ogrodnik

The article presents results from the research into fire temperature influence on steel-concrete bond and on the bond reduction for both in-fire and after-fire status. Bond tests and its results for materials St3S, 18G2 reinforced steel and C16/20, C40/50 concrete, have been described in the article both for in fire and after-fire conditions. All tests have shown a significant reduction of steel-concrete bond as a result of fire temperature. It was proven, that significant bond differences exist between in-fire and after-fire tests, what demonstrate that the bond is regained partially after the exposure.

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5230
Author(s):  
Konrad A. Sodol ◽  
Łukasz Kaczmarek ◽  
Jacek Szer

This paper presents the research data of the fire-temperature influence on Portland CEM I (OPC) and calcium sulfoaluminate (CSA) types of cement blend composites as cooling materials dedicated for infill and covers in fire systems. The data present the material responses for four types at high-temperature elevation times (0, 15, 30, 60 min), such as core heat curves, differences in specimens color, flexural and compressive strength parameters. Materials were tested using the DSC method to collect information about enthalpies. The differences between cement blend composites were compared with commonly used cooling materials such as gypsum blends. It is shown that modifications to Portland cement composites by calcium sulfoaluminate cement have a significant influence on the cooling performance during high-temperature, even for 60 min of exposure. The temperature increase rates in the material core were slower in composites with regards to additionally containing calcium sulfoaluminate in 100–150 °C range. After 60 min of high-temperature elevation, the highest flexural and compressive strength was 75% OPC/25% CSA cement composition. The influence on cooling properties was not related to strength properties. The presented solution may have a significant influence as a passive extinguisher solution of future fire resistance systems in civil engineering.


2017 ◽  
Vol 42 (31) ◽  
pp. 20056-20070 ◽  
Author(s):  
Damien Halm ◽  
Fabien Fouillen ◽  
Eric Lainé ◽  
Mikaël Gueguen ◽  
Denis Bertheau ◽  
...  

2012 ◽  
Vol 628 ◽  
pp. 156-160
Author(s):  
In Kyu Kwon ◽  
Hyung Jun Kim ◽  
Heung Youl Kim ◽  
Bum Yean Cho ◽  
Kyung Suk Cho

Structural steel has been used since the early 1970’s in Korea as primary structural members such as columns, beams, and trusses. The materials have much higher strength such as fast construction, high load bearing capacity, high construction quality but those have a fatal weakness as well. Load-bearing capacity is going down when the structural members are contained in fire condition. Therefore, to protect the structural members made of steels from the heat energy the fire resistance performance required. Generally, the fire resistance performance have evaluated from the exact fire tests in fire furnaces. But the evaluation method takes much more time and higher expenses so, the engineering method requires. The engineering method not only adopts a science but also an engineering experience. In this paper, to make various data-bases for evaluation of structural members such as columns(H-section, RHS), beams, loaded fire tests were conducted and derived not only each limiting temperature but also fire resistance respectively.


2012 ◽  
Vol 249-250 ◽  
pp. 1057-1062
Author(s):  
M. Zeinoddini ◽  
S.A. Hosseini ◽  
M. Daghigh ◽  
S. Arnavaz

Previous researchers have tried to predict the response of different types of structures under elevated temperatures. The results are important in preventing the collapse of buildings in fire. Post-fire status of the structures is also of interest for ensuring the safety of rescue workers during the fire and in the post-fire situations. Determining the extent of the structural damage left behind a fire event is necessary to draw up adequate repair plans. Connections play an important role on the fire performance of different structures. Due to the high cost of fire tests, adequate experimental data about a broad range of connections is not available. A vulnerable type of such connections to fire is the weld connections between I-shape beams and cylindrical columns in oil platform topsides. Considering the high probability of fire in oil platforms, study of the behaviour of these connections at elevated temperatures and in the post-fire, is of great importance. In the current study, eight small scale experimental fire tests on welded connections between I-shape beams and cylindrical columns have been conducted. Four tests are aimed at investigating the structural performance of this connection at elevated temperature. In other tests, post-fire behaviour of these connections has been studied to investigate their residual structural strength.


2017 ◽  
pp. 315-323
Author(s):  
U. Dolinar ◽  
A. Ogrin ◽  
I. Planinc ◽  
T. Hozjan

2013 ◽  
Vol 12 (1) ◽  
pp. 115-122
Author(s):  
Michał Głowacki ◽  
Marian Abramowicz ◽  
Robert Kowalski

This paper describes the analysis of high temperature influence on beams with heated tensile zone. High temperature experiments were preformed under the static load of 50 or 70% of the destructive force ensuring constant value of bending moment in the central part of the heated beam. Beams with 2 reinforcement ratios – 0.44 and 1.13% were examined. In total four series of beams, three in each series (12 elements) were used. This paper analyses the reduction of relative beam cross section stiffness depending on reinforcement temperature. Experimentally obtained stiffness values calculated in two ways (element maximal deflection and deflection measured in three points of analysed element) were compared to calculation results made according to Eurocode. The performed analysis shows that reduction of the stiffness of element based on Eurocode calculations is slightly bigger than the experimentally obtained one.


2018 ◽  
Vol 163 ◽  
pp. 07004 ◽  
Author(s):  
Wojciech Węgrzyński ◽  
Piotr Turkowski

The origins of standardised fire testing can be traced back to 1870’s, and the origin of the standard temperature-time curve to 1917. This approach, based on a 19th-century intuition is still in use up to this day, to design the 21st-century structures. Standardized fire-testing ultimately disregards the conservation of energy in the fire, as in every test the resulting temperature of the test must be the same (precisely as the temp.-time curve). To maintain this, different amount of heat is required in every test, which means that every time a different fire is modelled within the furnace. The differences between furnace fire sizes are ignored in the certification process, but can be interesting for fire researchers to understand how different materials behave in fire conditions. In this paper, Authors explore this topic by investigating the energy balance within the furnace, and comparing different fire tests together.


Sign in / Sign up

Export Citation Format

Share Document