High-velocity impact damage to polymer matrix composites

Author(s):  
R C TENNYSON ◽  
C G LAMONTAGNE
Author(s):  
Zahra Naghizadeh ◽  
Mehdi Faezipour ◽  
Mohammad Hossein Pol ◽  
Gholam Hossein Liaghat ◽  
Ali Abdolkhani

Experimental studies are presented on the high velocity impact behavior of nanomaterial dispersed resin viz laminates made using E-glass fabric with epoxy resin. The nanomaterials used are silica nanoparticles and carboxyl functionalized multi-walled carbon nanotube (COOH-MWCNT) for polymer matrix composites. The composites' ballistic limit ( Vbl) and impact energy absorbed ( Eab) were determined by subjecting the material to impact loading of 85, 100, and 112 m/s by conical nose projectile. It was found that the high velocity impact response of epoxy composites improved when a nanomaterial was used as reinforcement. COOH-MWCNTs reinforced composites exhibited better energy absorption than silica nanoparticles composites. Moreover, the damage pattern for different types of materials studied is presented. It is observed that the damage size on the target around the point of impact decreases on addition of nanoparticles especially COOH-MWCNTs. Quantitative data are presented for high velocity impact behavior of the seven types of specimens studied.


2018 ◽  
Vol 53 (4) ◽  
pp. 535-546 ◽  
Author(s):  
M Altaf ◽  
S Singh ◽  
VV Bhanu Prasad ◽  
Manish Patel

The compressive strength of C/SiC composite at different strain rates, off-axis orientations and after high-velocity impact was studied. The compressive strength was found to be 137 ± 23, 130 ± 46 and 162 ± 33 MPa at a strain rate of 3.3 × 10−5, 3.3 × 10−3, 3.3 × 10−3 s−1, respectively. On the other hand, the compressive strength was found to be 130 ± 46, 99 ± 23 and 87 ± 9 MPa for 0°/90°, 30°/60° and 45°/45° fibre orientations to loading direction, respectively. After high-velocity impact, the residual compressive strength of C/SiC composite was found to be 58 ± 26, 44 ± 18 and 36 ± 3.5 MPa after impact with 100, 150 and 190 m/s, respectively. The formation of kink bands in fibre bundles was found to be dominant micro-mechanism for compressive failure of C/SiC composite for 0°/90° orientation. On the other hand, delamination and the fibre bundles rotation were found to be the dominant mechanism for off-axis failure of composite.


Sign in / Sign up

Export Citation Format

Share Document