scholarly journals Solar cells based on CdTe thin films

2021 ◽  
Vol 22 (4) ◽  
pp. 817-827
Author(s):  
T.M. Mazur ◽  
V.V. Prokopiv ◽  
M.P. Mazur ◽  
U.M. Pysklynets

An analysis of the use of semiconductor solar cells based on thin-film cadmium telluride (CdTe) in power engineering is carried out. It is shown that the advantages of thin-film technology and CdTe itself as a direct-gap semiconductor open up the prospect of large-scale production of competitive CdTe solar modules. The physical and technical problems of increasing the efficiency of CdS/CdTe heterostructure solar cells, which are significantly inferior to the theoretically possible value in mass production, are discussed. The state of CdTe thin-film solar cells, which make CdTe a suitable material for ground-based photoelectric conversion of solar energy, the historical development of the CdTe compound, the application of CdTe thin films, the main methods and strategies of device production, device analysis and fundamental problems related to the future development of thin-film modules based on cadmium telluride.

2012 ◽  
Vol 510-511 ◽  
pp. 429-435 ◽  
Author(s):  
G.H. Tariq ◽  
M. Anis-ur-Rehman

The direct energy band gap in the range of ~1.5eV and the high absorption coefficient (~105cm-1) makes Cadmium Telluride (CdTe) a suitable material for fabrication of thin film solar cells. Thin film solar cells based on CdTe (~ 1cm area) achieved efficiency of 15.6% on a laboratory scale. CdTe thin films were deposited by thermal evaporation technique under vacuum 2×10-5mbar on glass and stainless steel (SS) substrates. During deposition substrates temperature was kept same at 200C for all samples. The structural properties were determined by the X-ray Diffraction (XRD) patterns. All samples exhibit polycrystalline nature. Dependence of different structural parameters such as lattice parameter, micro strain, and grain size and dislocation density on thickness was studied. Also the influence of the different substrates on these parameters was investigated. The analysis showed that the preferential orientation of films was dependent on the substrate type.


2009 ◽  
Vol 1165 ◽  
Author(s):  
Sergiu A Vatavu ◽  
Hehong Zhao ◽  
Iuliana M Caraman ◽  
Petru A Gasin ◽  
Don L Morel ◽  
...  

AbstractTechnology variations involving Cu and Cl impurities are among the major performance influencing factors for CdS/CdTe thin film solar cells. CuCl and CdCl2 influence on the energetic diagram of impurity levels with respect to variation of deposition parameters has been investigated. A comparative analysis has been carried out by using low temperature photoluminescence (PL) studies (17-98K) of CdTe thin films in the device configuration (from CdS/CdTe inteface and CdTe sides). To study the effect of CuCl influence, as-deposited, annealed heterojunctions, with CuCl treatment of CdS have been investigated.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Alaa Ayad Al-mebir ◽  
Paul Harrison ◽  
Ali Kadhim ◽  
Guanggen Zeng ◽  
Judy Wu

Anin situthermal annealing process (iTAP) has been introduced before the commonex situcadmium chloride (CdCl2) annealing to improve crystal quality and morphology of the CdTe thin films after pulsed laser deposition of CdS/CdTe heterostructures. A strong correlation between the two annealing processes was observed, leading to a profound effect on the performance of CdS/CdTe thin film solar cells. Atomic force microscopy and Raman spectroscopy show that the iTAP in the optimal processing window produces considerable CdTe grain growth and improves the CdTe crystallinity, which results in significantly improved optoelectronic properties and quantum efficiency of the CdS/CdTe solar cells. A power conversion efficiency of up to 7.0% has been obtained on thin film CdS/CdTe solar cells of absorber thickness as small as 0.75 μm processed with the optimal iTAP at 450°C for 10–20 min. This result illustrates the importance of controlling microstructures of CdTe thin films and iTAP provides a viable approach to achieve such a control.


2010 ◽  
Vol 148-149 ◽  
pp. 1710-1716 ◽  
Author(s):  
Wern Dare Jheng ◽  
Chien Chon Chen

Dye-Sensitized Solar Cells (DSSC) are currently under development worldwide. Photoelectric conversion efficiency cannot yet rival the efficiency levels of commercial silicon solar cells. Nonetheless, due to the advantages of simple production, low cost and accessibility which allows for large-scale production, photoelectric conversion efficiency is still one of the technologies under urgent development in the next stage of new solar energy. Usually, laboratories adopt the method of absorbing dyes on film electrodes by placing the specimen sample in the dye for a lengthy soaking period (12 hours). Such an approach merely yields the result of the dye molecules being absorbed on the TiO2 Nanotube, which does not produce time efficiency conducive to future commercialization. Such an improvement in efficiency could have a major impact on the mass production process. Consequently, this study employs a hot-pressure system on a jack with molding to distinguish pressurization, temperature and heating in the pressurization processes; we discovered from the experimental results that the best performance resulted from the heating process. This process not only sped up the diffusion velocity of the dye molecules being absorbed on the tube but also enhanced the photoelectric efficiency for solar cells. This could thereby lead to substantial time saving in the dye soaking process and greatly enhanced the economic benefits of products.


2009 ◽  
Vol 1165 ◽  
Author(s):  
Vasilios Palekis ◽  
Deidra Ranel Hodges ◽  
Don L Morel ◽  
Lee Stefanakos ◽  
Chris S Ferekides

AbstractCadmium telluride (CdTe) is a leading thin film photovoltaic (PV) material due to its near ideal band gap of 1.45 eV and its high optical absorption coefficient. The typical CdTe thin film solar cell is of the superstrate configuration where a window layer (CdS), the absorber (CdTe), and a back contact are deposited onto a glass slide coated with a transparent electrode. Substrate CdTe solar cells where the above listed films are deposited in reverse order are not common. In this study, the growth of CdTe thin films deposited on foil substrates by the close-spaced sublimation (CSS) has been investigated for the purpose of fabricating substrate based CdTe solar cells. The CdTe films were deposited at substrate temperatures (TSUB) in the range of 300 to 600°C, and source temperatures (TSRC) in the 600 to 650°C range. The effect of the substrate-source temperature variations on the growth rate, film structure and morphology were studied using XRD and SEM. It was found that for low substrate temperature and as the growth rate increases, grain size was the same but the films appeared to be more uniform and more densely packed with less or no pinholes. The growth rate increased as the source temperature increased. The substrate temperature clearly influences the grain growth and the preferred orientation. As the substrate temperature increased the growth rate decreased and the grain size varied from 2 to 6 μm. XRD analysis showed that with the increase in substrate temperature film orientation changes from preferential along the (111) direction to a mix of (111) (220) and (311).


2014 ◽  
Vol 556-562 ◽  
pp. 169-172 ◽  
Author(s):  
Huan Ke ◽  
Ting Zhi Liu ◽  
Shu Wang Duo ◽  
Hao Zhang

Thin film solar cells (TFSC) are the most potential for development of new and renewable clean energy. The large-scale production and application of TFSC can ease the energy crisis and protect the environment for human. However, buffer layer is a critical layer, which determines the performance of TFSC. This paper reviews the preparation, mechanisms, deposition systems, and development of ZnS thin-film buffer layers and points out that CBD-ZnS thin film is the best buffer layer material taking place of CdS.


Solar Energy ◽  
2017 ◽  
Vol 144 ◽  
pp. 411-416 ◽  
Author(s):  
T.M. Razykov ◽  
K.M. Kuchkarov ◽  
C.S. Ferekides ◽  
B.A. Ergashev ◽  
R.T. Yuldoshov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document