scholarly journals An Efficient Genome Editing Strategy To Generate Putative Null Mutants in Caenorhabditis elegans Using CRISPR/Cas9

2018 ◽  
Vol 8 (11) ◽  
pp. 3607-3616 ◽  
Author(s):  
Han Wang ◽  
Heenam Park ◽  
Jonathan Liu ◽  
Paul W. Sternberg
2018 ◽  
Author(s):  
Han Wang ◽  
Heenam Park ◽  
Jonathan Liu ◽  
Paul W. Sternberg

AbstractNull mutants are essential for analyzing gene function. Here, we describe a simple and efficient method to generate Caenorhabditis elegans null mutants using CRISPR/Cas9 and short single stranded DNA oligo repair templates to insert a universal 43-nucleotide-long stop knock-in (STOP-IN) cassette into the early exons of target genes. This cassette has stop codons in all three reading frames and leads to frameshifts, which will generate putative null mutations regardless of the reading frame of the insertion position in exons. The STOP-IN cassette also contains an exogenous Cas9 target site that allows further genome editing and provides a unique sequence that simplifies the identification of successful insertion events via PCR. As a proof of concept, we inserted the STOP-IN cassette right at a Cas9 target site in aex-2 to generate new putative null alleles by injecting preassembled Cas9 ribonucleoprotein and a short synthetic single stranded DNA repair template containing the STOP-IN cassette and two 35-nucleotide-long homology arms identical to the sequences flanking the Cas9 cut site. We showed that these new aex-2 alleles phenocopied an existing loss-of-function allele of aex-2. We further showed that the new aex-2 null alleles could be reverted back to the wild-type sequence by targeting exogenous Cas9 cut site included in the STOP-IN cassette and providing a single stranded wild-type DNA repair oligo. We applied our STOP-IN method to generate new putative null mutants for additional 20 genes, including three pharyngeal muscle-specific genes (clik-1, clik-2, and clik-3), and reported a high insertion rate (46%) based on the animals we screened. We showed that null mutations of clik-2 cause recessive lethality with a severe pumping defect and clik-3 null mutants have a mild pumping defect, while clik-1 is dispensable for pumping. We expect that the knock-in method using the STOP-IN cassette will facilitate the generation of new null mutants to understand gene function in C. elegans and other genetic model organisms.SummaryWe report a simple and efficient CRISPR/Cas9 genome editing strategy to generate putative null C. elegans mutants by inserting a small universal stop knock-in (STOP-IN) cassette with stop codons in three frames and frameshifts. The strategy is cloning-free, with the mixture consisting of preassembled Cas9 ribonucleoprotein and single stranded repair DNA oligos directly injected into gonads of adult C. elegans. The universal STOP-IN cassette also contains a unique sequence that simplifies detection of successful knock-in events via PCR and an exogenous Cas9 target sequence that allows further genome editing.


2021 ◽  
Author(s):  
Jeffrey C Medley ◽  
Shilpa Hebbar ◽  
Joel T Sydzyik ◽  
Anna Y. Zinovyeva

In Caenorhabditis elegans, germline injection of Cas9 complexes is reliably used to achieve genome editing through homology-directed repair of Cas9-generated DNA breaks. To prevent Cas9 from targeting repaired DNA, additional blocking mutations are often incorporated into homologous repair templates. Cas9 can be blocked either by mutating the PAM sequence that is essential for Cas9 activity or by mutating the guide sequence that targets Cas9 to a specific genomic location. However, it is unclear how many nucleotides within the guide sequence should be mutated, since Cas9 can recognize off-target sequences that are imperfectly paired to its guide. In this study, we examined whether single-nucleotide substitutions within the guide sequence are sufficient to block Cas9 and allow for efficient genome editing. We show that a single mismatch within the guide sequence effectively blocks Cas9 and allows for recovery of edited animals. Surprisingly, we found that a low rate of edited animals can be recovered without introducing any blocking mutations, suggesting a temporal block to Cas9 activity in C. elegans. Furthermore, we show that the maternal genome of hermaphrodite animals is preferentially edited over the paternal genome. We demonstrate that maternally provided haplotypes can be selected using balancer chromosomes and propose a method of mutant isolation that greatly reduces screening efforts post-injection. Collectively, our findings expand the repertoire of genome editing strategies in C. elegans and demonstrate that extraneous blocking mutations are not required to recover edited animals when the desired mutation is located within the guide sequence.


2013 ◽  
Vol 41 (20) ◽  
pp. e193-e193 ◽  
Author(s):  
Changchun Chen ◽  
Lorenz A. Fenk ◽  
Mario de Bono

Genetics ◽  
2018 ◽  
Vol 210 (3) ◽  
pp. 781-787 ◽  
Author(s):  
Gregoriy A. Dokshin ◽  
Krishna S. Ghanta ◽  
Katherine M. Piscopo ◽  
Craig C. Mello

Genetics ◽  
2014 ◽  
Vol 198 (4) ◽  
pp. 1347-1356 ◽  
Author(s):  
Alexandre Paix ◽  
Yuemeng Wang ◽  
Harold E. Smith ◽  
Chih-Yung S. Lee ◽  
Deepika Calidas ◽  
...  

2020 ◽  
Author(s):  
Krishna S. Ghanta ◽  
Craig C. Mello

ABSTRACTCRISPR genome editing has revolutionized genetics in many organisms. In the nematode Caenorhabditis elegans one injection into each of the two gonad arms of an adult hermaphrodite exposes hundreds of meiotic germ cells to editing mixtures, permitting the recovery of multiple indels or small precision edits from each successfully injected animal. Unfortunately, particularly for long insertions, editing efficiencies can vary widely, necessitating multiple injections, and often requiring co-selection strategies. Here we show that melting double stranded DNA (dsDNA) donor molecules prior to injection increases the frequency of precise homology-directed repair (HDR) by several fold for longer edits. We describe troubleshooting strategies that enable consistently high editing efficiencies resulting, for example, in up to 100 independent GFP knock-ins from a single injected animal. These efficiencies make C. elegans by far the easiest metazoan to genome edit, removing barriers to the use and adoption of this facile system as a model for understanding animal biology.


2008 ◽  
Vol 19 (4) ◽  
pp. 1529-1539 ◽  
Author(s):  
Rachel K. Miller ◽  
Hiroshi Qadota ◽  
Kristina B. Mercer ◽  
Kim M. Gernert ◽  
Guy M. Benian

Mutations in unc-96 or -98 cause reduced motility and a characteristic defect in muscle structure: by polarized light microscopy birefringent needles are found at the ends of muscle cells. Anti-paramyosin stains the needles in unc-96 and -98 mutant muscle. However there is no difference in the overall level of paramyosin in wild-type, unc-96, and -98 animals. Anti-UNC-98 and anti-paramyosin colocalize in the paramyosin accumulations of missense alleles of unc-15 (encodes paramyosin). Anti-UNC-96 and anti-UNC-98 have diffuse localization within muscles of unc-15 null mutants. By immunoblot, in the absence of paramyosin, UNC-98 is diminished, whereas in paramyosin missense mutants, UNC-98 is increased. unc-98 and -15 or unc-96 and -15 interact genetically either as double heterozygotes or as double homozygotes. By yeast two-hybrid assay and ELISAs using purified proteins, UNC-98 interacts with paramyosin residues 31-693, whereas UNC-96 interacts with a separate region of paramyosin, residues 699-798. The importance of surface charge of this 99 residue region for UNC-96 binding was shown. Paramyosin lacking the C-terminal UNC-96 binding region fails to localize throughout A-bands. We propose a model in which UNC-98 and -96 may act as chaperones to promote the incorporation of paramyosin into thick filaments.


2021 ◽  
Author(s):  
Ana R. G. De-Castro ◽  
Diogo R. M. Rodrigues ◽  
Maria J. G. De-Castro ◽  
Neide Vieira ◽  
Carmen Vieira ◽  
...  

The dynein-2 motor complex drives retrograde intraflagellar transport (IFT), playing a pivotal role in the assembly and functions of cilia. However, the mechanisms that regulate dynein-2 motility remain poorly understood. Here, we identify the Caenorhabditis elegans WDR60 homolog (WDR-60) and dissect the roles of this intermediate chain using genome editing and live imaging of endogenous dynein-2/IFT components. We find that loss of WDR-60 impairs dynein-2 recruitment to cilia and its incorporation onto anterograde IFT trains, reducing the availability of the retrograde motor at the ciliary tip. Consistently, we show that less dynein-2 motors power WDR-60-deficient retrograde IFT trains, which move at reduced velocities and fail to exit cilia, accumulating on the distal side of the transition zone. Remarkably, disrupting the transition zone's NPHP module almost fully restores ciliary exit of underpowered retrograde trains in wdr-60 mutants. This work establishes WDR-60 as a major contributor to IFT and the NPHP module as a roadblock to dynein-2 passage through the transition zone.


Sign in / Sign up

Export Citation Format

Share Document