scholarly journals Visualization and Quantification of Transposon Activity in Caenorhabditis elegans RNAi Pathway Mutants

2019 ◽  
Vol 9 (11) ◽  
pp. 3825-3832 ◽  
Author(s):  
Dylan C. Wallis ◽  
Dieu An H. Nguyen ◽  
Celja J. Uebel ◽  
Carolyn M. Phillips
2014 ◽  
Vol 458 (1) ◽  
pp. 119-130 ◽  
Author(s):  
Sai Chaitanya Chiliveri ◽  
Mandar V. Deshmukh

RDE-4 initiates the RNAi pathway in Caenorhabditis elegans. Structural studies on RDE-4 dsRBDs illustrate the indispensible role of dsRBD2 and linker in dsRNA recognition and Dicer activity. The structure-based mutagenesis identifies two tandem lysine residues that drive the dsRNA recognition.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Alyson Ashe ◽  
Tony Bélicard ◽  
Jérémie Le Pen ◽  
Peter Sarkies ◽  
Lise Frézal ◽  
...  

RNA interference defends against viral infection in plant and animal cells. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model of host-virus interaction. Using a genome-wide association study in C. elegans wild populations and quantitative trait locus mapping, we identify a 159 base-pair deletion in the conserved drh-1 gene (encoding a RIG-I-like helicase) as a major determinant of viral sensitivity. We show that DRH-1 is required for the initiation of an antiviral RNAi pathway and the generation of virus-derived siRNAs (viRNAs). In mammals, RIG-I-domain containing proteins trigger an interferon-based innate immunity pathway in response to RNA virus infection. Our work in C. elegans demonstrates that the RIG-I domain has an ancient role in viral recognition. We propose that RIG-I acts as modular viral recognition factor that couples viral recognition to different effector pathways including RNAi and interferon responses.


2013 ◽  
Vol 89 (2) ◽  
pp. 208-216 ◽  
Author(s):  
T. Tzelos ◽  
J.B. Matthews ◽  
B. Whitelaw ◽  
D.P. Knox

AbstractThe nematode Teladorsagiacircumcincta is a major cause of parasitic gastroenteritis in sheep in temperate regions. The development of resistance to the major anthelmintic classes used for its control is a threat to small ruminant farming sustainability. Vaccination is a potential alternative control method for this nematode. Gene datasets can be exploited to identify potential vaccine candidates and these validated further by methods such as RNA interference (RNAi) prior to vaccine trials. Previous reports indicate that RNAi in parasitic nematodes is inconsistent and, to date, there are no internal controls that indicate activation of the RNAi pathway in response to double-stranded RNA (dsRNA). The present aims were to determine whether or not the transcription levels of potential marker genes in the RNAi pathway could indicate activation of the pathway in Caenorhabditis elegans and to develop an RNAi platform in T. circumcincta. In C. elegans, transcript levels of three candidate marker genes, Ce-dcr-1 (Dicer), Ce-ego-1 (Enhancer of Glp-One family member) and Ce-rsd-3 (RNAi Spreading Defective), were analysed and results indicated that activation of the pathway had no effect on transcript levels of these genes. In T. circumcincta, two vaccine candidate genes from the Activation-associated Secreted Protein (ASP) family were targets for knockdown. RNAi experiments showed successful silencing of both targets, although inconsistencies in efficacy were observed. After testing a number of parameters that might affect variability, it was found that the length of the storage period of the larvae plays an important role in the consistency of the RNAi results.


PLoS Genetics ◽  
2018 ◽  
Vol 14 (3) ◽  
pp. e1007252 ◽  
Author(s):  
Christina Fassnacht ◽  
Cristina Tocchini ◽  
Pooja Kumari ◽  
Dimos Gaidatzis ◽  
Michael B. Stadler ◽  
...  

2019 ◽  
Vol 48 (4) ◽  
pp. 1811-1827 ◽  
Author(s):  
Kailee J Reed ◽  
Joshua M Svendsen ◽  
Kristen C Brown ◽  
Brooke E Montgomery ◽  
Taylor N Marks ◽  
...  

Abstract Piwi-interacting RNAs (piRNAs) and small interfering RNAs (siRNAs) are distinct classes of small RNAs required for proper germline development. To identify the roles of piRNAs and siRNAs in regulating gene expression in Caenorhabditis elegans, we subjected small RNAs and mRNAs from the gonads of piRNA and siRNA defective mutants to high-throughput sequencing. We show that piRNAs and an abundant class of siRNAs known as WAGO-class 22G-RNAs are required for proper expression of spermatogenic and oogenic genes. WAGO-class 22G-RNAs are also broadly required for transposon silencing, whereas piRNAs are largely dispensable. piRNAs, however, have a critical role in controlling histone gene expression. In the absence of piRNAs, histone mRNAs are misrouted into the nuclear RNAi pathway involving the Argonaute HRDE-1, concurrent with a reduction in the expression of many histone mRNAs. We also show that high-level gene expression in the germline is correlated with high level 22G-RNA production. However, most highly expressed genes produce 22G-RNAs through a distinct pathway that presumably involves the Argonaute CSR-1. In contrast, genes targeted by the WAGO branch of the 22G-RNA pathway are typically poorly expressed and respond unpredictably to loss of 22G-RNAs. Our results point to broad roles for piRNAs and siRNAs in controlling gene expression in the C. elegans germline.


2011 ◽  
Vol 11 (3) ◽  
pp. 389-405 ◽  
Author(s):  
Sadegh Azimzadeh Jamalkandi ◽  
Ali Masoudi-Nejad

mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Mélanie Tanguy ◽  
Louise Véron ◽  
Przemyslaw Stempor ◽  
Julie Ahringer ◽  
Peter Sarkies ◽  
...  

ABSTRACT Across metazoans, innate immunity is vital in defending organisms against viral infection. In mammals, antiviral innate immunity is orchestrated by interferon signaling, activating the STAT transcription factors downstream of the JAK kinases to induce expression of antiviral effector genes. In the nematode Caenorhabditis elegans, which lacks the interferon system, the major antiviral response so far described is RNA interference (RNAi), but whether additional gene expression responses are employed is not known. Here we show that, despite the absence of both interferon and JAK, the C. elegans STAT homolog STA-1 orchestrates antiviral immunity. Intriguingly, mutants lacking STA-1 are less permissive to antiviral infection. Using gene expression analysis and chromatin immunoprecipitation, we show that, in contrast to the mammalian pathway, STA-1 acts mostly as a transcriptional repressor. Thus, STA-1 might act to suppress a constitutive antiviral response in the absence of infection. Additionally, using a reverse genetic screen, we identify the kinase SID-3 as a new component of the response to infection, which, along with STA-1, participates in the transcriptional regulatory network of the immune response. Our work uncovers novel physiological roles for two factors in viral infection: a SID protein acting independently of RNAi and a STAT protein acting in C. elegans antiviral immunity. Together, these results illustrate the complex evolutionary trajectory displayed by innate immune signaling pathways across metazoan organisms. IMPORTANCE Since innate immunity was discovered, a diversity of pathways has arisen as powerful first-line defense mechanisms to fight viral infection. RNA interference, reported mostly in invertebrates and plants, as well as the mammalian interferon response and JAK/STAT pathway are key in RNA virus innate immunity. We studied infection by the Orsay virus in Caenorhabditis elegans, where RNAi is known to be a potent antiviral defense. We show that, in addition to its RNAi pathway, C. elegans utilizes an alternative STAT pathway to control the levels of viral infection. We identify the transcription factor STA-1 and the kinase SID-3 as two components of this response. Our study defines C. elegans as a new example of the diversity of antiviral strategies. IMPORTANCE Since innate immunity was discovered, a diversity of pathways has arisen as powerful first-line defense mechanisms to fight viral infection. RNA interference, reported mostly in invertebrates and plants, as well as the mammalian interferon response and JAK/STAT pathway are key in RNA virus innate immunity. We studied infection by the Orsay virus in Caenorhabditis elegans, where RNAi is known to be a potent antiviral defense. We show that, in addition to its RNAi pathway, C. elegans utilizes an alternative STAT pathway to control the levels of viral infection. We identify the transcription factor STA-1 and the kinase SID-3 as two components of this response. Our study defines C. elegans as a new example of the diversity of antiviral strategies.


Author(s):  
Yun Wang ◽  
Chenchun Weng ◽  
Xiangyang Chen ◽  
Xufei Zhou ◽  
Xinya Huang ◽  
...  

AbstractAntisense ribosomal siRNAs (risiRNAs) downregulate pre-rRNAs through the nuclear RNAi pathway in Caenorhabditis elegans. However, the biogenesis and regulation of risiRNAs remain obscure. Previously, we showed that 26S rRNAs are uridylated at the 3’-ends by an unknown terminal polyuridylation polymerase before the rRNAs are degraded by a 3’ to 5’ exoribonuclease SUSI-1(ceDIS3L2). There are three polyuridylation polymerases, CDE-1, PUP-2, and PUP-3, in C. elegans. Here, we found that CDE-1 is specifically involved in suppressing risiRNA production. CDE-1 localizes to perinuclear granules in the germline and uridylates both Argonaute-associated 22G-RNAs and 26S rRNAs at the 3’-ends. Immunoprecipitation followed by mass spectrometry (IP-MS) revealed that CDE-1 interacts with SUSI-1(ceDIS3L2). Consistent with those results, both CDE-1 and SUSI-1(ceDIS3L2) are required for the inheritance of RNAi. Therefore, this work identified a rRNA surveillance machinery of rRNAs that couples terminal polyuridylation and degradation.


Sign in / Sign up

Export Citation Format

Share Document