scholarly journals A C++ Template Library for Efficient Forward-Time Population Genetic Simulation of Large Populations

Genetics ◽  
2014 ◽  
Vol 198 (1) ◽  
pp. 157-166 ◽  
Author(s):  
Kevin R. Thornton
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Patrick P. Putnam ◽  
Philip A. Wilsey ◽  
Ge Zhang

Author(s):  
Jeffrey R. Adrion ◽  
Christopher B. Cole ◽  
Noah Dukler ◽  
Jared G. Galloway ◽  
Ariella L. Gladstein ◽  
...  

AbstractThe explosion in population genomic data demands ever more complex modes of analysis, and increasingly these analyses depend on sophisticated simulations. Recent advances in population genetic simulation have made it possible to simulate large and complex models, but specifying such models for a particular simulation engine remains a difficult and error-prone task. Computational genetics researchers currently re-implement simulation models independently, leading to inconsistency and duplication of effort. This situation presents a major barrier to empirical researchers seeking to use simulations for power analyses of upcoming studies or sanity checks on existing genomic data. Population genetics, as a field, also lacks standard benchmarks by which new tools for inference might be measured. Here we describe a new resource, stdpopsim, that attempts to rectify this situation. Stdpopsim is a community-driven open source project, which provides easy access to a growing catalog of published simulation models from a range of organisms and supports multiple simulation engine backends. This resource is available as a well-documented python library with a simple command-line interface. We share some examples demonstrating how stdpopsim can be used to systematically compare demographic inference methods, and we encourage a broader community of developers to contribute to this growing resource.


2016 ◽  
Author(s):  
Benjamin A. Wilson ◽  
Pleuni S. Pennings ◽  
Dmitri A. Petrov

AbstractEvolutionary rescue occurs when a population that is declining in size because of an environmental change is rescued by genetic adaptation. Evolutionary rescue is an important phenomenon at the intersection of ecology and population genetics. While most population genetic models of evolutionary rescue focus on estimating the probability of rescue, we focus on whether one or more adaptive lineages contribute to evolutionary rescue. We find that when evolutionary rescue is likely, it is often driven by soft selective sweeps where multiple adaptive mutations spread through the population simultaneously. We give full analytic results for the probability of evolutionary rescue and the probability that evolutionary rescue occurs via soft selective sweeps in our model. We expect that these results will find utility in understanding the genetic signatures associated with various evolutionary rescue scenarios in large populations, such as the evolution of drug resistance in viral, bacterial, or eukaryotic pathogens.


mSphere ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Vaughn S. Cooper

ABSTRACT Experimental evolution is a method in which populations of organisms, often microbes, are founded by one or more ancestors of known genotype and then propagated under controlled conditions to study the evolutionary process. These evolving populations are influenced by all population genetic forces, including selection, mutation, drift, and recombination, and the relative contributions of these forces may be seen as mysterious. Here, I describe why the outcomes of experimental evolution should be viewed with greater certainty because the force of selection typically dominates. Importantly, any mutant rising rapidly to high frequency in large populations must have acquired adaptive traits in the selective environment. Sequencing the genomes of these mutants can identify genes or pathways that contribute to an adaptation. I review the logic and simple mathematics why this evolve-and-resequence approach is a powerful way to find the mutations or mutation combinations that best increase fitness in any new environment.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jeffrey R Adrion ◽  
Christopher B Cole ◽  
Noah Dukler ◽  
Jared G Galloway ◽  
Ariella L Gladstein ◽  
...  

The explosion in population genomic data demands ever more complex modes of analysis, and increasingly, these analyses depend on sophisticated simulations. Recent advances in population genetic simulation have made it possible to simulate large and complex models, but specifying such models for a particular simulation engine remains a difficult and error-prone task. Computational genetics researchers currently re-implement simulation models independently, leading to inconsistency and duplication of effort. This situation presents a major barrier to empirical researchers seeking to use simulations for power analyses of upcoming studies or sanity checks on existing genomic data. Population genetics, as a field, also lacks standard benchmarks by which new tools for inference might be measured. Here, we describe a new resource, stdpopsim, that attempts to rectify this situation. Stdpopsim is a community-driven open source project, which provides easy access to a growing catalog of published simulation models from a range of organisms and supports multiple simulation engine backends. This resource is available as a well-documented python library with a simple command-line interface. We share some examples demonstrating how stdpopsim can be used to systematically compare demographic inference methods, and we encourage a broader community of developers to contribute to this growing resource.


2016 ◽  
Vol 17 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Christian M. Parobek ◽  
Frederick I. Archer ◽  
Michelle E. DePrenger-Levin ◽  
Sean M. Hoban ◽  
Libby Liggins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document