The Leading-edge and Unique Technology,Mitsubishi Low Pressure EGR

2017 ◽  
Vol 04 (03) ◽  
pp. 215-223
Author(s):  
Takashi Ueda ◽  
Kazuhisa Ito ◽  
Naohiro Hiraoka
Keyword(s):  
2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Maria Vera ◽  
Elena de la Rosa Blanco ◽  
Howard Hodson ◽  
Raul Vazquez

Research by de la Rosa Blanco et al. (“Influence of the State of the Inlet Endwall Boundary Layer on the Interaction Between the Pressure Surface Separation and the Endwall Flows,” Proc. Inst. Mech. Eng., Part A, 217, pp. 433–441) in a linear cascade of low pressure turbine (LPT) blades has shown that the position and strength of the vortices forming the endwall flows depend on the state of the inlet endwall boundary layer, i.e., whether it is laminar or turbulent. This determines, amongst other effects, the location where the inlet boundary layer rolls up into a passage vortex, the amount of fluid that is entrained into the passage vortex, and the interaction of the vortex with the pressure side separation bubble. As a consequence, the mass-averaged stagnation pressure loss and therefore the design of a LPT depend on the state of the inlet endwall boundary layer. Unfortunately, the state of the boundary layer along the hub and casing under realistic engine conditions is not known. The results presented in this paper are taken from hot-film measurements performed on the casing of the fourth stage of the nozzle guide vanes of the cold flow affordable near term low emission (ANTLE) LPT rig. These results are compared with those from a low speed linear cascade of similar LPT blades. In the four-stage LPT rig, a transitional boundary layer has been found on the platforms upstream of the leading edge of the blades. The boundary layer is more turbulent near the leading edge of the blade and for higher Reynolds numbers. Within the passage, for both the cold flow four-stage rig and the low speed linear cascade, the new inlet boundary layer formed behind the pressure leg of the horseshoe vortex is a transitional boundary layer. The transition process progresses from the pressure to the suction surface of the passage in the direction of the secondary flow.


Author(s):  
Edmund Kügeler ◽  
Georg Geiser ◽  
Jens Wellner ◽  
Anton Weber ◽  
Anselm Moors

This is the third part of a series of three papers on the simulation of turbulence and transition effects in a multistage low pressure turbine. The third part of the series deals with the detailed comparison of the Harmonic Balance calculations with the full wheel simulations and measurements for the two-stage low-pressure turbine. The Harmonic Balance simulations were carried out in two confingurations, either using only the 0th harmonic in the turbulence and transition model or additional in all harmonics. The same Menter SST two-equation k–ω turbulence model along with Menter and Langtrys two-equation γ–Reθ transition model is used in the Harmonic Balance simulation as in the full wheel simulations. The measurements on the second stator ofthe low-pressure turbine have been carried out separately for downstream and upstream influences. Thus, a dedicated comparison of the downstream and upstream influences of the flow to the second stator is possible. In the Harmonic Balance calculations, the influences of the not directly adjacent blade, i.e. the first stator, were also included in the second stator In the first analysis, however, it was shown that the consistency with the full wheel configuration and the measurement in this case was not as good as expected. From the analysis ofthe full wheel simulation, we found that there is a considerable variation in the order ofmagnitude ofthe unsteady values in the second stator. In a further deeper consideration of the configuration, it is found that modes are reflected in upstream rows and influences the flow in the second stator. After the integration of these modes into the Harmonic Balance calculations, a much better agreement was reached with results ofthe full wheel simulation and the measurements. The second stator has a laminar region on the suction side starting at the leading edge and then transition takes place via a separation or in bypass mode, depending on the particular blade viewed in the circumferential direction. In the area oftransition, the clear difference between the calculations without and with consideration ofthe higher harmonics in the turbulence and transition models can be clearly seen. The consideration ofthe higher harmonics in the turbulence and transition models results an improvement in the consistency.


2019 ◽  
Vol 28 (5) ◽  
pp. 886-904
Author(s):  
Tao Cui ◽  
Songtao Wang ◽  
Xiaolei Tang ◽  
Fengbo Wen ◽  
Zhongqi Wang

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
R. Pichler ◽  
V. Michelassi ◽  
R. Sandberg ◽  
J. Ong

Blade-to-blade interactions in a low-pressure turbine (LPT) were investigated using highly resolved compressible large eddy simulations (LESs). For a realistic setup, a stator and rotor configuration with profiles typical of LPTs was used. Simulations were conducted with an in-house solver varying the gap size between stator and rotor from 21.5% to 43% rotor chord. To investigate the effect of the gap size on the prevailing loss mechanisms, a loss breakdown was conducted. It was found that in the large gap (LG) size case, the turbulence kinetic energy (TKE) levels of the stator wake close to the rotor leading edge were only one third of those in the small gap (SG) case, due to the longer distance of constant area mixing. The small time-averaged suction side separation on the blade, found in the LG case, disappeared in the SG calculations, confirming how stronger wakes can keep the boundary layer attached. The higher intensity wake impinging on the blade, however, did not affect the time-averaged losses calculated using the control volume approach of Denton. On the other hand, losses computed by taking cross sections upstream and downstream of the blade revealed a greater distortion loss generated by the stator wakes in the SG case. Despite the suction side separation suppression, the SG case gave higher losses overall due to the incoming wake turbulent kinetic energy amplification along the blade passage.


2004 ◽  
Vol 126 (2) ◽  
pp. 250-256 ◽  
Author(s):  
Michael J. Brear ◽  
Howard P. Hodson

This paper describes an investigation into the effect that passing wakes have on a separation bubble that exists on the pressure surface and near the leading edge of a low-pressure turbine blade. Previous experimental studies have shown that the behavior of this separation is strongly incidence dependent and that it responds to its disturbance environment. The results presented in this paper examine the effect of wake passing in greater detail. Two-dimensional, Reynolds averaged, numerical predictions are first used to examine qualitatively the unsteady interaction between the wakes and the separation bubble. The separation is predicted to consist of spanwise vortices whose development is in phase with the wake passing. However, comparison with experiments shows that the numerical predictions exaggerate the coherence of these vortices and also overpredict the time-averaged length of the separation. Nonetheless, experiments strongly suggest that the predicted phase locking of the vortices in the separation onto the wake passing is physical.


Author(s):  
P. Jenny ◽  
R. S. Abhari ◽  
M. G. Rose ◽  
M. Brettschneider ◽  
J. Gier

This paper presents an experimental and computational study of non-axisymmetric rotor end wall profiling in a low pressure turbine. End wall profiling has been proven to be an effective technique to reduce both turbine blade row losses and the required purge flow. For this work a rotor with profiled end walls on both hub and shroud is considered. The rotor tip and hub end walls have been designed using an automatic numerical optimisation that is implemented in an in-house MTU code. The end wall shape is modified up to the platform leading edge. Several levels of purge flow are considered in order to analyze the combined effects of end wall profiling and purge flow. The non-dimensional parameters match real engine conditions. The 2-sensor Fast Response Aerodynamic Probe (FRAP) technique system developed at ETH Zurich is used in this experimental campaign. Time-resolved measurements of the unsteady pressure, temperature and entropy fields between the rotor and stator blade rows are made. For the operating point under investigation the turbine rotor blades have pressure side separations. The unsteady behavior of the pressure side bubble is studied. Furthermore, the results of unsteady RANS simulations are compared to the measurements and the computations are also used to detail the flow field with particular emphasis on the unsteady purge flow migration and transport mechanisms in the turbine main flow containing a rotor pressure side separation. The profiled end walls show the beneficial effects of improved measured efficiency at this operating point, together with a reduced sensitivity to purge flow.


Author(s):  
Kazutoyo Yamada ◽  
Hiroaki Kikuta ◽  
Ken-ichiro Iwakiri ◽  
Masato Furukawa ◽  
Satoshi Gunjishima

The unsteady behavior and three-dimensional flow structure of spike-type stall inception in an axial compressor rotor have been investigated by experimental and numerical analyses. Previous studies have revealed that the test compressor falls into a mild stall after emergence of a spike, in which multiple stall cells, each consisting of a tornado-like vortex, are rotating. However, the flow mechanism from the spike onset to the mild stall remains unexplained. The purpose of this study is to describe the flow mechanism of a spike stall inception in a compressor. In order to capture the transient phenomena of spike-type stall inception experimentally, an instantaneous casing pressure field measurement technique was developed, in which 30 pressure transducers measure an instantaneous casing pressure distribution inside the passage for one blade pitch at a rate of 25 samplings per blade passing period. This technique was applied to obtain the unsteady and transient pressure fields on the casing wall during the inception process of the spike stall. In addition, the details of the three-dimensional flow structure at the spike stall inception have been analyzed by a numerical approach using the detached-eddy simulation (DES). The instantaneous casing pressure field measurement results at the stall inception show that a low-pressure region starts traveling near the leading edge in the circumferential direction just after the spiky wave was detected in the casing wall pressure trace measured near the rotor leading edge. The DES results reveal the vortical flow structure behind the low-pressure region on the casing wall at the stall inception, showing that the low-pressure region is caused by a tornado-like separation vortex resulting from a leading-edge separation near the rotor tip. A leading-edge separation occurs near the tip at the onset of the spike stall and grows to form the tornado-like vortex connecting the blade suction surface and the casing wall. The casing-side leg of the tornado-like vortex generating the low-pressure region circumferentially moves around the leading-edge line. When the vortex grows large enough to interact with the leading edge of the next blade, the leading-edge separation begins to propagate, and then, the compressor falls into a stall with decreasing performance.


Author(s):  
A. Asghar ◽  
W. D. E. Allan ◽  
M. LaViolette ◽  
R. Woodason

This paper addresses the issue of aerodynamic performance of a novel 3D leading edge modification to a reference low pressure turbine blade. An analysis of tubercles found in nature and used in some engineering applications was employed to synthesize new leading edge geometry. A sinusoidal wave-like geometry characterized by wavelength and amplitude was used to modify the leading edge along the span of a 2D profile, rendering a 3D blade shape. The rationale behind using the sinusoidal leading edge was that they induce streamwise vortices at the leading edge which influence the separation behaviour downstream. Surface pressure and total pressure measurements were made in experiments on a cascade rig. These were complemented with computational fluid dynamics studies where flow visualization was also made from numerical results. The tests were carried out at low Reynolds number of 5.5 × 104 on a well-researched profile representative of conventional low pressure turbine profiles. The performance of the new 3D leading edge geometries was compared against the reference blade revealing a downstream shift in separated flow for the LE tubercle blades; however, total pressure loss reduction was not conclusively substantiated for the blade with leading edge tubercles when compared with the performance of the baseline blade. Factors contributing to the total pressure loss are discussed.


Author(s):  
Michael J. Brear ◽  
Howard P. Hodson

This paper describes an investigation into the effect that passing wakes have on a separation bubble that exists on the pressure surface and near the leading edge of a low pressure turbine blade. Previous experimental studies have shown that the behaviour of this separation is strongly incidence dependent and that it responds to its disturbance environment. The results presented in this paper examine the effect of wake passing in greater detail. Two dimensional, Reynolds averaged, numerical predictions are first used to examine qualitatively the unsteady interaction between the wakes and the separation bubble. The separation is predicted to consist of spanwise vortices whose development is in phase with the wake passing. However, comparison with experiments shows that the numerical predictions exaggerate the coherence of these vortices and also overpredict the time-averaged length of the separation. Nonetheless, experiments strongly suggest that the predicted phase locking of the vortices in the separation onto the wake passing is physical.


Sign in / Sign up

Export Citation Format

Share Document