Water Budget of Constructed Wetland System with Subsurface Vertical Flow in Sub-Humid Tropical Climate

2015 ◽  
Vol 1 (5) ◽  
pp. 235-242
Author(s):  
Édio Damásio da Silva Júnior ◽  
Rogério de Araújo Almeida ◽  
Elisa Rodrigues Siqueira ◽  
Ábio Roduvalho da Silva
2005 ◽  
Vol 51 (9) ◽  
pp. 137-144 ◽  
Author(s):  
A. Noorvee ◽  
E. Põldvere ◽  
Ü. Mander

Data from 18 sampling wells in Kodijärve horizontal subsurface flow (HSSF) constructed wetland (CW) (South Estonia) is presented and differences in purification efficiencies inside the HSSF CW are calculated. Temporarily anaerobic conditions in the Kodijärve HSSF system did not allow efficient removal of BOD7, NH4-N, Ntot and Ptot. In 2002 a vertical subsurface flow filter was constructed to enhance aeration. The design of the system was based simply on the oxygen demand of the wastewater and on the aeration potential of vertical flow wetlands. The vertical flow system has shown satisfactory results. The purification efficiency of BOD7 in the Kodijärve CW has improved significantly and there has been a slight increase in purification efficiencies of NH4-N and Ntot. On the ohther hand, the removal efficiency of Ptot has decreased significantly. Although, the mass loading rates have increased, mass removal rates of all four parameters have improved significantly. Nevertheless, optimization of the constructed wetland system is essential in order to meet effluent standards during wintertime.


2003 ◽  
Vol 48 (5) ◽  
pp. 35-41 ◽  
Author(s):  
C.A. Arias ◽  
A. Cabello ◽  
H. Brix ◽  
N.-H. Johansen

The removal of sanitary indicator bacteria (total coliforms, faecal coliforms, and faecal streptococci) was studied in an experimental constructed wetland system consisting of (1) a 2-m3 three-chamber sedimentation tank, (2) a 5 m2 vertical flow constructed wetland, (3) a filter-unit with calcite aimed at removing phosphorus, and (4) a 10 m2 vertical flow constructed wetland. The indicator bacteria were enumerated before and after each unit of the wetland system during four monitoring episodes with different loading conditions. At a hydraulic loading rate of 520-1,370 mm/d, the first-stage vertical flow beds removed about 1.5 log-units of total coliforms, 1.7 log-units of faecal coliforms and 0.8 log-units of faecal streptococci. In the second stage bed receiving lower loadings both in term of concentration and quantity (260-690 mm/day), the eliminations were lower. It was not possible in the present study to identify any seasonal effects, but no measurements were done during summer. Recycling of treated effluent back to the sedimentation tank did not affect elimination. Area-based rate constants for the vertical flow wetland receiving effluent from the sedimentation tank averaged 3.2 m/d for total coliforms, 3.3 m/d for faecal coliforms and 2.1 m/d for faecal streptococci. The rate constants depended on loading rates. It is suggested that filtration is a major removal mechanism for bacterial indicator organisms in vertical flow constructed wetland systems.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 171-176 ◽  
Author(s):  
L. Gervin ◽  
H. Brix

Lake Utterslev is situated in a densely built-up area of Copenhagen, and is heavily eutrophicated from combined sewer overflows. At the same time the lake suffers from lack of water. Therefore, a 5,000 m2 vertical flow wetland system was constructed in 1998 to reduce the phosphorus discharge from combined sewer overflows without reducing the water supply to the lake. During dry periods the constructed wetland is used to remove phosphorus from the lake water. The system is designed as a 90 m diameter circular bed with a bed depth of c. 2 m. The system is isolated from the surroundings by a polyethylene membrane. The bed medium consists of a mixture of gravel and crushed marble, which has a high binding capacity for phosphorus. The bed is located within the natural littoral zone of the lake and is planted with common reed (Phragmites australis). The constructed wetland is intermittently loaded with combined sewer overflow water or lake water and, after percolation through the bed medium, the water is collected in a network of drainage pipes at the bottom of the bed and pumped to the lake. The fully automated loading cycle results in alternating wet and dry periods. During the initial two years of operation, the phosphorus removal for combined sewer overflows has been consistently high (94-99% of inflow concentrations). When loaded with lake water, the phosphorus removal has been high during summer (71-97%) and lower during winter (53-75%) partly because of lower inlet concentrations. Effluent phosphorus concentrations are consistently low (0.03-0.04 mg/L). Ammonium nitrogen is nitrified in the constructed wetland, and total suspended solids and COD are generally reduced to concentrations below 5 mg/L and 25 mg/L, respectively. The study documents that a subsurface flow constructed wetland system can be designed and operated to effectively remove phosphorus and other pollutants from combined sewer overflows and eutrophicated lake water.


2021 ◽  
Vol 82 ◽  
pp. 20-43
Author(s):  
Boopathy Usharani ◽  
Namasivayam Vasudevan

In the global outlook, letting of untreated sewage in existing river bodies deteriorates the water quality. The seepage likely depreciates the quality of ground water too. The quality of groundwater with special reference to India has tremendously gone down in the past twenty years leading to sour taste. On the other hand, agriculture sector is deprived of water in many places of India. A solution can be arrived concurrently by treating sewage and consuming the effluent in agricultural sector. First order kinetics was applied in constructed wetland system at different flow rates and optimised. At optimised HLR, effluent met the standards of discharge that can be utilized for agricultural/ irrigational purpose. The emanating major pollutants can be effectively treated using constructed wetland system under tropical climate. A few clippings at the onsite treatment illustrated the diversity of species thus adjoining sustainable biodiversity and treatment. Thus in tropical countries like India, constructed wetland system might pave solution not only for the treatment of sewage but in deploying the effluent in agricultural sector. A clean ecosystem can be achieved with sustainability.


Sign in / Sign up

Export Citation Format

Share Document