scholarly journals Causes and features of long-term variability of the ice extent in the Barents Sea

2019 ◽  
Vol 59 (1) ◽  
pp. 112-122 ◽  
Author(s):  
S. B. Krasheninnikova ◽  
M. A. Krasheninnikova

Based on the spectral analysis of a number of estimates of the ice extent of the Barents Sea, obtained from instrumental observational data for 1900–2014, and for the selected CMIP5 project models (MPI-ESM-LR, MPI-ESMMR and GFDL-CM3) for 1900–2005, a typical period of ~60‑year inter-annual variability associated with the Atlantic multidecadal oscillation (AMO) in conditions of a general significant decrease in the ice extent of the Barents Sea, which, according to observations and model calculations, was 20 and 15%, respectively, which confirms global warming. The maximum contribution to the total dispersion of temperature, ice cover of the Barents Sea, AMO, introduces variability with periods of more than 20 years and trends that are 47, 20, 51% and 33, 57, 30%, respectively. On the basis of the cross correlation analysis,  significant links have been established between the ice extent of the Barents Sea, AMO, and North Atlantic Oscillation (NAO) for the  period 1900–2014. A significant negative connection (R = −0.8) of ice cover and Atlantic multi-decadal oscillations was revealed at periods of more than 20 years with a shift of 1–2 years; NAO and ice cover (R = −0.6) with a shift of 1–2 years for periods of 10–20 years; AMO and NAO (R = −0.4 ÷ −0.5) with a 3‑year shift with AMO leading at 3–4, 6–8 and more than 20 years. The periods of the ice cover growth are specified: 1950–1980 and the reduction of the ice cover: the 1920–1950 and the 1980–2010 in the Barents Sea. Intensification of the transfer of warm waters from the North Atlantic to the Arctic basin, under the atmospheric influence caused by the NAO, accompanied by the growth of AMO leads to an increase in temperature, salinity and a decrease of ice cover in the Barents Sea. During periods of ice cover growth, opposite tendencies appear. The decrease in the ice cover area of the entire Northern Hemisphere by 1.5 × 106 km2 since the mid-1980s. to the beginning of the 2010, identified in the present work on NOAA satellite data, confirms the results obtained on the change in ice extent in the Barents Sea.

2012 ◽  
Vol 25 (1) ◽  
pp. 307-319 ◽  
Author(s):  
Jan Sedláček ◽  
Reto Knutti ◽  
Olivia Martius ◽  
Urs Beyerle

Abstract The Arctic sea ice cover declined over the last few decades and reached a record minimum in 2007, with a slight recovery thereafter. Inspired by this the authors investigate the response of atmospheric and oceanic properties to a 1-yr period of reduced sea ice cover. Two ensembles of equilibrium and transient simulations are produced with the Community Climate System Model. A sea ice change is induced through an albedo change of 1 yr. The sea ice area and thickness recover in both ensembles after 3 and 5 yr, respectively. The sea ice anomaly leads to changes in ocean temperature and salinity to a depth of about 200 m in the Arctic Basin. Further, the salinity and temperature changes in the surface layer trigger a “Great Salinity Anomaly” in the North Atlantic that takes roughly 8 yr to travel across the North Atlantic back to high latitudes. In the atmosphere the changes induced by the sea ice anomaly do not last as long as in the ocean. The response in the transient and equilibrium simulations, while similar overall, differs in specific regional and temporal details. The surface air temperature increases over the Arctic Basin and the anomaly extends through the whole atmospheric column, changing the geopotential height fields and thus the storm tracks. The patterns of warming and thus the position of the geopotential height changes vary in the two ensembles. While the equilibrium simulation shifts the storm tracks to the south over the eastern North Atlantic and Europe, the transient simulation shifts the storm tracks south over the western North Atlantic and North America. The authors propose that the overall reduction in sea ice cover is important for producing ocean anomalies; however, for atmospheric anomalies the regional location of the sea ice anomalies is more important. While observed trends in Arctic sea ice are large and exceed those simulated by comprehensive climate models, there is little evidence based on this particular model that the seasonal loss of sea ice (e.g., as occurred in 2007) would constitute a threshold after which the Arctic would exhibit nonlinear, irreversible, or strongly accelerated sea ice loss. Caution should be exerted when extrapolating short-term trends to future sea ice behavior.


Polar Record ◽  
1965 ◽  
Vol 12 (81) ◽  
pp. 703-708 ◽  
Author(s):  
Jenö Nagy

Svalbard comprises the islands between longs 10 to 35° E and between lats 74 to 81° N. The largest of these islands is Vestpitsbergen, followed by Nordaustlandet, Edgeøya, Barentsøya and Bjørnøya. The archipelago lies in the northwestern part of the Barents-Kara shelf. To south and east the continental shelf is covered by the shallow waters of the Barents Sea, whilst to the north and west the shelf falls away rapidly into the Arctic Basin and the Greenland Sea.


2020 ◽  
Author(s):  
Erica Madonna ◽  
Gabriel Hes ◽  
Clio Michel ◽  
Camille Li ◽  
Peter Yu Feng Siew

<p>Extratropical cyclones are a key player for the global energy budget as they transport a large amount of moisture and heat from mid- to high-latitudes. One of the main corridors for cyclones entering the Arctic from the North Atlantic is the Barents Sea, a region that has experienced the largest decrease in winter sea ice during the past decades. On the one hand, some studies showed that moisture transported by cyclones to the Arctic can lead to drastic temperature increases and sea ice melt. On the other hand, it has been suggested that the location of the sea ice edge can influence the tracks of cyclones. Therefore, it is crucial to understand what controls cyclone tracks through the Barents Sea into the Arctic to explain and potentially predict climate variability at high latitudes.</p><p>To address this question, we track cyclones from 1979 to 2018 in the ERA-Interim data set, characterizing and quantifying them depending on their genesis location and path. The focus is on cyclones entering the Barents Sea from the North Atlantic as they carry the most moisture into the Arctic. Despite a clear declining trend in sea ice in the Barents Sea, our results show neither significant changes in cyclone frequency nor in their tracks. However, we find that the large-scale flow and in particular the presence or absence of blocking in the Barents Sea influence the cyclone frequency in this region, providing a potential mechanism that controls high latitude climate variability.</p>


2009 ◽  
Vol 6 (1) ◽  
pp. 971-994 ◽  
Author(s):  
E. H. Shadwick ◽  
T. Papakyriakou ◽  
A. E. F. Prowe ◽  
D. Leong ◽  
S. A. Moore ◽  
...  

Abstract. The Arctic Ocean is expected to be disproportionately sensitive to climatic changes, and is thought to be an area where such changes might be detected. The Arctic hydrological cycle is influenced by: runoff and precipitation, sea ice formation/melting, and the inflow of saline waters from Bering and Fram Straits and the Barents Sea Shelf. Pacific water is recognizable as intermediate salinity water, with high concentrations of dissolved inorganic carbon (DIC), flowing from the Arctic Ocean to the North Atlantic via the Canadian Arctic Archipelago. We present DIC data from an east-west section through the Archipelago, as part of the Canadian International Polar Year initiatives. The fractions of Pacific and Arctic Ocean waters leaving the Archipelago and entering Baffin Bay, and subsequently the North Atlantic, are computed. The eastward transport of carbon from the Pacific, via the Arctic, to the North Atlantic is estimated. Altered mixing ratios of Pacific and freshwater in the Arctic Ocean have been recorded in recent decades. Any climatically driven alterations in the composition of waters leaving the Arctic Archipelago may have implications for anthropogenic CO2 uptake, and hence ocean acidification, in the subpolar and temperate North Atlantic.


2021 ◽  
pp. 179-194
Author(s):  
I.O. Dumanskaya ◽  

The warming of the Arctic, especially intensified at the beginning of the XXI century, is accompanied by a significant decrease in the area of ice cover in the Arctic seas. The article shows the quantitative changes in the ice parameters of the Barents Sea, as well as factors affecting the formation of ice cover in recent years. In the twenty-first century the frequency of occurrence of mild winters has increased by 17%, the frequency of severe winters has decreased by 19%. Significantly increased the temperature at the meteorological station Malye Karmakuly, water temperature at transect "Kola Meridian", atmospheric and oceanic heat fluxes, and speed of sea currents on the Western border of the Barents sea. The duration of the ice period decreased by an average of 2–3 weeks, and the rate of reduction of ice cover was 7.2% for 10 years. This is the highest speed compared to other Arctic seas. The article shows that the variability of the ice cover of the Barents Sea and other parameters of the natural environment in the region has the cyclic character. Presumably, the cycle period is close to 84 years, which corresponds to the orbital period of Uranium. The minimum sea ice extent after 1935–1945 is expected in the period 2019–2029.


Ocean Science ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. 971-982 ◽  
Author(s):  
V. N. Stepanov ◽  
H. Zuo ◽  
K. Haines

Abstract. An analysis of observational data in the Barents Sea along a meridian at 33°30' E between 70°30' and 72°30' N has reported a negative correlation between El Niño/La Niña Southern Oscillation (ENSO) events and water temperature in the top 200 m: the temperature drops about 0.5 °C during warm ENSO events while during cold ENSO events the top 200 m layer of the Barents Sea is warmer. Results from 1 and 1/4-degree global NEMO models show a similar response for the whole Barents Sea. During the strong warm ENSO event in 1997–1998 an anomalous anticyclonic atmospheric circulation over the Barents Sea enhances heat loses, as well as substantially influencing the Barents Sea inflow from the North Atlantic, via changes in ocean currents. Under normal conditions along the Scandinavian peninsula there is a warm current entering the Barents Sea from the North Atlantic, however after the 1997–1998 event this current is weakened. During 1997–1998 the model annual mean temperature in the Barents Sea is decreased by about 0.8 °C, also resulting in a higher sea ice volume. In contrast during the cold ENSO events in 1999–2000 and 2007–2008, the model shows a lower sea ice volume, and higher annual mean temperatures in the upper layer of the Barents Sea of about 0.7 °C. An analysis of model data shows that the strength of the Atlantic inflow in the Barents Sea is the main cause of heat content variability, and is forced by changing pressure and winds in the North Atlantic. However, surface heat-exchange with the atmosphere provides the means by which the Barents sea heat budget relaxes to normal in the subsequent year after the ENSO events.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1170
Author(s):  
Sergey Sakerin ◽  
Dmitry Kabanov ◽  
Valery Makarov ◽  
Viktor Pol’kin ◽  
Svetlana Popova ◽  
...  

The results from studies of aerosol in the Arctic atmosphere are presented: the aerosol optical depth (AOD), the concentrations of aerosol and black carbon, as well as the chemical composition of the aerosol. The average aerosol characteristics, measured during nine expeditions (2007–2018) in the Eurasian sector of the Arctic Ocean, had been 0.068 for AOD (0.5 µm); 2.95 cm−3 for particle number concentrations; 32.1 ng/m3 for black carbon mass concentrations. Approximately two–fold decrease of the average characteristics in the eastern direction (from the Barents Sea to Chukchi Sea) is revealed in aerosol spatial distribution. The average aerosol characteristics over the Barents Sea decrease in the northern direction: black carbon concentrations by a factor of 1.5; particle concentrations by a factor of 3.7. These features of the spatial distribution are caused mainly by changes in the content of fine aerosol, namely: by outflows of smokes from forest fires and anthropogenic aerosol. We considered separately the measurements of aerosol characteristics during two expeditions in 2019: in the north of the Barents Sea (April) and along the Northern Sea Route (July–September). In the second expedition the average aerosol characteristics turned out to be larger than multiyear values: AOD reached 0.36, particle concentration up to 8.6 cm−3, and black carbon concentration up to 179 ng/m3. The increased aerosol content was affected by frequent outflows of smoke from forest fires. The main (99%) contribution to the elemental composition of aerosol in the study regions was due to Ca, K, Fe, Zn, Br, Ni, Cu, Mn, and Sr. The spatial distribution of the chemical composition of aerosols was analogous to that of microphysical characteristics. The lowest concentrations of organic and elemental carbon (OC, EC) and of most elements are observed in April in the north of the Barents Sea, and the maximal concentrations in Far East seas and in the south of the Barents Sea. The average contents of carbon in aerosol over seas of the Asian sector of the Arctic Ocean are OC = 629 ng/m3, EC = 47 ng/m3.


2020 ◽  
Author(s):  
Andrey Jakovlev ◽  
Sergey Kovalev ◽  
Egor Shimanchuk ◽  
Evgeniy Shimanchuk ◽  
Aleksey Nubom

<p>Despite the strong attention to the investigations in the Arctic its advance quite slowly. The harsh climatic conditions and big expenses slow down realization of the fieldwork in high latitudes. Therefore, scientists from over the world looks for new technologies, which could optimize and reduce the costs of the fieldworks that aimed at investigation of the geological structure beneath the Arctic Ocean. From March to May 2019 scientific expedition on the Expedition Vessel “Akademic Tryoshnikov” operated by the Arctic and Antarctic Research Institute that belongs to Rosgidromet were conducted in the framework of the program “TransArctica 2019” first stage. In the framework of the seismological experiments 6 temporary seismic stations at 4 different locations were installed on a drifted ice floe in the North Barents Sea. The first aim of the experiment was to elaborate technology of installation of the seismic stations on the drifting ice floes. The second aim was to check if obtained seismological records could be used for registration of the local and remote earthquakes, which are meant to investigate the lithosphere structure in the Arctic regions, and for investigation of the processes within the ice floe.</p><p>The stations were installed in the April 2019 on the ice floe near the EV “Akademik Tryoshnikov” that were “frizzed” in the ice floe and drifted together with them. After analysis of the recoded data the following types of the seismic signal generated by processes in the ice were observed:</p><ul><li>- background signal from bending-gravitational waves with periods from 1 to 30 sec. Swell waves with periods from 17 to 30 sec were observed permanently during the whole period of network operation;</li> <li>- continuous mechanical vibrations (self-oscillations) with a period of up to 2-3 sec;</li> <li>- stick-slip relaxation self-oscillations with a period from 0.1 s to several minutes;</li> <li>- mechanical movements of ice due to compression or stretching of ice caused by chaotic different scales fluctuations in the drift velocity of ice floes;</li> <li>- process of ice fracturing due to compression or stretching of ice.</li> </ul><p>Results of monitoring of the ice cover has shown that in the most cases there are no direct correlations of processes within the ice floes and local hydrometeorological condition. During the process of ice cover fracturing an increased value of the ice horizontal movement were observed. Analysis of the seismic signal from ice events has shown that stick-slip events preceded origin of the ice fractures.</p><p>As a result of the initial analysis of the seismograms several signals from remote and regional earthquakes were detected. For example, an earthquake that according to the ISC bulletin occur at 08:18:23UTC on April 11, 2019 near the Japan (40.35°N, 143.35°E, 35 km depth, MS = 6.0) were detected. A local earthquake that occur approximately at 05:58UTC on April 10, 2019 at a distance of ~500 km. Due to close location of stations to each other the localization of the earthquake is impossible.</p><p>This work is supported by the RSCF project #18-17-00095.</p>


2010 ◽  
Vol 10 (21) ◽  
pp. 10223-10236 ◽  
Author(s):  
J. B. Gilman ◽  
J. F. Burkhart ◽  
B. M. Lerner ◽  
E. J. Williams ◽  
W. C. Kuster ◽  
...  

Abstract. The influence of halogen oxidation on the variabilities of ozone (O3) and volatile organic compounds (VOCs) within the Arctic and sub-Arctic atmospheric boundary layer was investigated using field measurements from multiple campaigns conducted in March and April 2008 as part of the POLARCAT project. For the ship-based measurements, a high degree of correlation (r = 0.98 for 544 data points collected north of 68° N) was observed between the acetylene to benzene ratio, used as a marker for chlorine and bromine oxidation, and O3 signifying the vast influence of halogen oxidation throughout the ice-free regions of the North Atlantic. Concurrent airborne and ground-based measurements in the Alaskan Arctic substantiated this correlation and were used to demonstrate that halogen oxidation influenced O3 variability throughout the Arctic boundary layer during these springtime studies. Measurements aboard the R/V Knorr in the North Atlantic and Arctic Oceans provided a unique view of the transport of O3-poor air masses from the Arctic Basin to latitudes as far south as 52° N. FLEXPART, a Lagrangian transport model, was used to quantitatively determine the exposure of air masses encountered by the ship to first-year ice (FYI), multi-year ice (MYI), and total ICE (FYI+MYI). O3 anti-correlated with the modeled total ICE tracer (r = −0.86) indicating that up to 73% of the O3 variability measured in the Arctic marine boundary layer could be related to sea ice exposure.


2014 ◽  
Vol 27 (23) ◽  
pp. 8884-8901 ◽  
Author(s):  
Takuya Nakanowatari ◽  
Kazutoshi Sato ◽  
Jun Inoue

Abstract Predictability of sea ice concentrations (SICs) in the Barents Sea in early winter (November–December) is studied using canonical correlation analysis with atmospheric and ocean anomalies from the NCEP Climate Forecast System Reanalysis (CFSR) data. It is found that the highest prediction skill for a single-predictor model is obtained from the 13-month lead subsurface temperature at 200-m depth (T200) and the in-phase meridional surface wind (Vsfc). T200 skillfully predicts SIC variability in 35% of the Barents Sea, mainly in the eastern side. The T200 for negative sea ice anomalies exhibits warm anomalies in the subsurface ocean temperature downstream of the Norwegian Atlantic Slope Current (NwASC) on a decadal time scale. The diagnostic analysis of NCEP CFSR data suggests that the subsurface temperature anomaly stored below the thermocline during summer reemerges in late autumn by atmospheric cooling and affects the sea ice. The subsurface temperature anomaly of the NwASC is advected from the North Atlantic subpolar gyre over ~3 years. Also, Vsfc skillfully predicts SIC variability in 32% of the Barents Sea, mainly in the western side. The Vsfc for the negative sea ice anomalies exhibits southerly wind anomalies; Vsfc is related to the large-scale atmospheric circulation patterns from the subtropical North Atlantic to the Eurasian continent. This study suggests that both atmospheric and oceanic remote effects have a potential impact on the forecasting accuracy of SIC.


Sign in / Sign up

Export Citation Format

Share Document