scholarly journals Methods of On-Site Electricity Generation with Landfill Gas

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Ivy Nuo Chen

The US consumes large quantities of electricity. As a result, there is a growing concern that energy may not be readily available in the future. This worry is compounded by the depletion of traditional sources such as coal, petroleum, and natural gas. Municipal solid waste in landfills is a resource the country may utilize as a renewable source of energy, as the gas produced from landfills can be used to power generators for electricity production, rather than wasted and flared to comply with Resource Conservation and Recovery Act standards. Systems that utilize reciprocating internal combustion engines, microturbines, and molten carbonate fuel cells can feasibly and cleanly reduce landfill gas emissions while producing electricity. However, these methods require input work and initial investments. The main economic goal is to maximize energy production. After economic analysis, the molten carbonate fuel cell system was determined to be the most efficient due to its versatility and low emissions. The successful implementation of the system may result in the propagation of the system, the increase in value of landfill gas, and the waste that produces landfill gas. This may also lead to restructuring of municipal waste system to enhance the usage of landfill gas. Keywords: municipal solid waste, MSW, landfill gas, reciprocating internal combustion engines, microturbines, molten carbonate fuel cells, MCFCs, siloxanes, emissions, greenhouse gases.

2019 ◽  
Vol 37 (6) ◽  
pp. 631-642 ◽  
Author(s):  
Ana Carolina Medina Jimenez ◽  
Reynaldo Palacios- Bereche ◽  
Silvia Nebra

In Brazil, in 2016, 196,050 tonnes day-1 of municipal solid waste (MSW) were collected, which means a waste generation of 1.035 kg per capita per day. Only 59.1% of the waste has adequate destination in sanitary landfills, whereas the remaining 40.9% has inadequate destination in controlled landfills and open dumps (ABRELPE, 2018). Among all the states in the country, the State of São Paulo has the biggest per capita generation: 2.290 kg. Today, the only waste destination practiced in the country is deposition in landfills, but other possibilities can be considered. Among thermal treatment routes, the gasification of MSW is an interesting alternative to be studied, because of its versatility and relatively low emissions. The aim of this work is to evaluate the potential of electricity generation through MSW gasification in Santo André city, Brazil, comparing three waste gasification technologies: TPS Termiska Processer AB, Carbogas and Energos. These alternatives have operated commercially for a few years, and data are available. Specific characteristics of each technology were taken into account, such as the reactor type and fuel properties. For the electricity production scheme, two energy conversion systems were assumed: an internal combustion engine and a steam power cycle. From the process parameters adopted, the results showed that Carbogas technology, coupled to internal combustion engines, presents the highest efficiency of electricity generation (30%) and also the lowest cost of electrical energy produced (US$65.22 MWh-1) when Santo André’s gate fee is applied.


Author(s):  
Yilmaz Yoru ◽  
T. Hikmet Karakoc ◽  
Arif Hepbasli ◽  
Enis T. Turgut

This study deals with types of micro cogeneration (or micro combined heat and power, MCHP) systems and reviews energetic and exergetic analysis of MCHP systems, which are also called building cogeneration systems. These are classified as micro and macro cogeneration systems and figured within subgroups. Previously conducted studies on exergy and energy analyses of internal combustion engines (micro turbines), external combustion engines (Ericsson engines), fuel cells (solid oxide fuel cells) and thermophotovoltaic systems are treated in this paper. The main objectives of this study are to classify MCHP systems used in building cogeneration systems, to introduce types of MCHP systems and to better define micro cogeneration systems in the light of previously conducted studies. In this regard, energetic and exergetic efficiencies of various MCHP systems are graphically obtained. Under grouping presented MCHP systems, internal combustion engines based MCHP systems are defined to be the best choice with energetic and exergetic efficiency values of 86.0% and 40.31%, respectively. Micro gas turbines and Ericson engine based micro cogeneration systems are also obtained as valuable systems with the energetic values of 75.99% and 65.97% and exergetic values of 35.8% and 38.5%, respectively. However, in this building cogeneration group, energetic and exergetic efficiencies of the thermophotovoltaic systems have 65.0% and 15.0%, respectively. It may be concluded that system choice depends on the type of the system, energy flow of the system, system parts and developments, while building, system capacity, comfort and maintenance are the other factors to be considered.


Author(s):  
Nader R. Ammar ◽  
Nayef F. S. H. Alshammari

The need for renewable and green energy sources to replace fossil fuel with the incrementally rising prices is driving many researchers to work on narrowing the gap between the most scientific innovative clean energy technologies and the concepts of feasibility and cost-effective solutions. The current paper aims to introduce one aspect of Green Energy; the use of Hydrogen as fuel for marine power plants, to replace all kinds of fossil fuels which are the major responsible of harmful emissions. There are three applications for hydrogen in marine field. These applications include hydrogen internal combustion engines, hydrogen gas turbines, and fuel cells. The main problems associated with the application of hydrogen in internal combustion engines are the engine knocking; air fuel ratio and intake temperature. The research programs for the application of hydrogen in gas turbines concentrate on studying the characteristics of hydrogen combustion inside gas turbine combustors. The third application of hydrogen is fuel cells. Huge developments have been achieved in this sector over the past few years. But for the marine field only the naval vessels market used it for auxiliary power generation.


2021 ◽  
Vol 508 ◽  
pp. 230328
Author(s):  
Lukas Kistner ◽  
Fritjof L. Schubert ◽  
Christine Minke ◽  
Astrid Bensmann ◽  
Richard Hanke-Rauschenbach

Sign in / Sign up

Export Citation Format

Share Document