scholarly journals The Influence of Diesel Oil Improvers on Indices of Atomisation and Combustion in High-Efficiency Engines

2017 ◽  
Vol 24 (3) ◽  
pp. 99-105 ◽  
Author(s):  
Ireneusz Pielecha ◽  
Jacek Pielecha ◽  
Maciej Skowron ◽  
Aleksander Mazanek

Abstract The process of fuel combustion in a diesel engine is determined by factors existing during liquid fuel injection and atomisation. The physicochemical properties of the fuel to a large extent decide upon the quality of this phase of cylinder fuelling. So it is important to ensure appropriate properties of a fuel affecting its atomisation and, as a result, combustion. The paper deals with the topic of diesel oil improvers and the analysis of their influence on atomisation and combustion indices. In the studies base diesel oil and a diesel fuel improved by a package of additives, were used. The process of conventional and improved fuel injection was analysed by using optical examinations. The amount of released heat was evaluated during the studies carried out on combustion. Significant aspects of the applied improvers in relation to fuel injection and its combustion have been indicated.

2018 ◽  
Vol 19 (12) ◽  
pp. 411-414
Author(s):  
Wincenty Lotko ◽  
Krzysztof Górski ◽  
Jerzy Stobiecki

The paper presents results of the crankshaft acceleration process of the diesel engine fuelled with diesel oil - diethyl ether blends. In particular mixtures of diesel fuel with addition of 5, 10, 15 and 20 % by volume were tested. Results confirmed that DEE addition has negative impact on acceleration process of the AD3.152 engine. However it should be pointed that tests were carried out for nominal settings of the engine fuel injection system. It means that these settings were not optimal for tested blends with different physico-chemical properties compared to regular diesel fuel.


Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


Author(s):  

The necessity of adapting diesel engines to work on vegetable oils is justified. The possibility of using rapeseed oil and its mixtures with petroleum diesel fuel as motor fuels is considered. Experimental studies of fuel injection of small high-speed diesel engine type MD-6 (1 Ch 8,0/7,5)when using diesel oil and rapeseed oil and computational studies of auto-tractor diesel engine type D-245.12 (1 ChN 11/12,5), working on blends of petroleum diesel fuel and rapeseed oil. When switching autotractor diesel engine from diesel fuel to rapeseed oil in the full-fuel mode, the mass cycle fuel supply increased by 12 %, and in the small-size high-speed diesel engine – by about 27 %. From the point of view of the flow of the working process of these diesel engines, changes in other parameters of the fuel injection process are less significant. Keywords diesel engine; petroleum diesel fuel; vegetable oil; rapeseed oil; high pressure fuel pump; fuel injector; sprayer


2005 ◽  
Author(s):  
Ali Mohammadi ◽  
Takuji Ishiyama ◽  
Takaaki Kakuta ◽  
Sung-Sub Kee

2019 ◽  
Vol 178 (3) ◽  
pp. 240-246
Author(s):  
Mirosław KARCZEWSKI

The problem of the military vehicles engines fuelling increases with the growth of the amount of vehicles in the armies. At the same time, another problem with fuel supply in modern engines is the use of bio component additives, which changes characteristics (quality) of the used fuels. Therefore, it is important to take actions to adapt engines to powering with fuels coming from renewable sources.The aim of the research was to evaluate the possibility of feeding the diesel engine (influence on the useful parameters and composi-tion) with mixtures of the unified battlefield fuel F-34/F-35 with biocomponents in the form of anhydrous ethyl alcohol and RME. The tests were conducted during fuelling of the engine with six kinds of fuels: basic fuel (diesel oil), NATO code F-34/F-35 fuel, as well as fuel mixtures: F-34 and RME with different ratio and F-34/F-35 with bioethanol. In the result of the research it was concluded that the parameters of the G9T Renault engine with the common rail fuel system in terms of F-34 and RME consumption (using) decreased in comparison to diesel oil basic fuel. It is not possible to supply the engine with the mixture of ethyl alcohol and F-34 fuel – alcohol pre-cipitation and obliteration of fuel system components


Author(s):  
Liu Hongcong

This paper represents the mustard oil is a kind of renewable energy and alternative fuel of the future. In order to cope with the current situation of load shedding, and reduce dependence on imported fuels, the Bangladesh government to encourage the use of renewable energy. Because the diesel engine with multiple functions, including small pumping irrigation system and backup generators, diesel fuel is much higher than that of any other gasoline fuel. In Bangladesh, mustard oil used as edible oil has been all over the country. Mustard is a widely grown plants, more than demand in Bangladesh and the mustard seed is produced annually. Therefore, to use the remaining mustard oil diesel fuel as a substitute. Fuel properties determine the standard procedure in fuel testing laboratory. An experimental device, and then a small diesel engine made in a laboratory using different conversion from the properties of biodiesel blend of mustard oil. The study found, biodiesel diesel fuel has a slightly different than the property. Also observed, and bio diesel, engine is able to without difficulty, but deviates from its optimal performance. Biodiesel was different (B20, B30, B50) of the blends have been used in engine or a fuel supply system, in order to avoid the complex deformation. Finally, it has been carried out to compare the performance of different operating conditions with different blends of Biodiesel Engine, in order to determine the optimal blends.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3837 ◽  
Author(s):  
Sam Ki Yoon ◽  
Jun Cong Ge ◽  
Nag Jung Choi

This experiment investigates the combustion and emissions characteristics of a common rail direct injection (CRDI) diesel engine using various blends of pure diesel fuel and palm biodiesel. Fuel injection pressures of 45 and 65 MPa were investigated under engine loads of 50 and 100 Nm. The fuels studied herein were pure diesel fuel 100 vol.% with 0 vol.% of palm biodiesel (PBD0), pure diesel fuel 80 vol.% blended with 20 vol.% of palm biodiesel (PBD20), and pure diesel fuel 50 vol.% blended with 50 vol.% of palm biodiesel (PBD50). As the fuel injection pressure increased from 45 to 65 MPa under all engine loads, the combustion pressure and heat release rate also increased. The indicated mean effective pressure (IMEP) increased with an increase of the fuel injection pressure. In addition, for 50 Nm of the engine load, an increase to the fuel injection pressure resulted in a reduction of the brake specific fuel consumption (BSFC) by an average of 2.43%. In comparison, for an engine load of 100 Nm, an increase in the fuel injection pressure decreased BSFC by an average of 0.8%. Hydrocarbon (HC) and particulate matter (PM) decreased as fuel pressure increased, independent of the engine load. Increasing fuel injection pressure for 50 Nm engine load using PBD0, PBD20 and PBD50 decreased carbon monoxide (CO) emissions. When the fuel injection pressure was increased from 45 MPa to 65 MPa, oxides of nitrogen (NOx) emissions were increased for both engine loads. For a given fuel injection pressure, NOx emissions increased slightly as the biodiesel content in the fuel blend increased.


1992 ◽  
Vol 114 (3) ◽  
pp. 515-521 ◽  
Author(s):  
B. D. Hsu ◽  
G. L. Confer ◽  
Z. J. Shen

In the GE 7FDL single-cylinder research diesel engine, coal-water slurry (CWS) fuel combustion optimization studies were conducted using electronically controlled CWS and pilot accumulator injectors. The most important performance parameters of peak firing pressure, combustion efficiency (coal burnout), and specific fuel comsumption were evaluated in relationship to CWS and pilot injection timing, CWS injector hole size, shape, and number, CWS fuel injection spray angles and injection pressure. Heat release diagrams, as well as exhaust samples (gaseous and particulate), were analyzed for each case. Interesting effects of fuel spray impingement and CWS fuel “Delayed Ignition” were observed. With the engine operating at 2.0 MPa IMEP and 1050 rpm, it was able to obtain over 99.5 percent combustion efficiency while holding the cylinder firing pressure below 17 MPa and thermal efficiency equivalent to diesel fuel operation.


Author(s):  
K Anand ◽  
R P Sharma ◽  
P S Mehta

Suitability of vegetable oil as an alternative to diesel fuel in compression ignition engines has become attractive, and research in this area has gained momentum because of concerns on energy security, high oil prices, and increased emphasis on clean environment. The experimental work reported here has been carried out on a turbocharged direct-injection multicylinder truck diesel engine using diesel fuel and jatropha methyl ester (JME)-diesel blends. The results of the experimental investigation indicate that an increase in JME quantity in the blend slightly advances the dynamic fuel injection timing and lowers the ignition delay compared with the diesel fuel. A maximum rise in peak pressure limited to 6.5 per cent is observed for fuel blends up to 40 per cent JME for part-load (up to about 50 per cent load) operations. However, for a higher-JME blend, the peak pressures decrease at higher loads remained within 4.5 per cent. With increasing proportion of JME in the blend, the peak pressure occurrence slightly advances and the maximum rate of pressure rise, combustion duration, and exhaust gas temperature decrease by 9 per cent, 15 per cent and 17 per cent respectively. Although the changes in brake thermal efficiencies for 20 per cent and 40 per cent JME blends compared with diesel fuel remain insignificant, the 60 per cent JME blend showed about 2.7 per cent improvement in the brake thermal efficiency. In general, it is observed that the overall performance and combustion characteristics of the engine do not alter significantly for 20 per cent and 40 per cent JME blends but show an improvement over diesel performance when fuelled with 60 per cent JME blend.


1989 ◽  
Vol 111 (3) ◽  
pp. 516-520 ◽  
Author(s):  
B. D. Hsu ◽  
G. L. Leonard ◽  
R. N. Johnson

Coal-water-slurry (CWS) engine tests designed to evaluate a new accumulator-based injection system are described in this paper. The new injection system was found to improve CWS burnout considerably at both full and part engine loads. The peak cylinder firing pressure when operating with CWS was no higher than when operating with diesel oil. These data demonstrate the improved engine performance that can be achieved with the accumulator-based injection system.


Sign in / Sign up

Export Citation Format

Share Document