Technology of Exposed Rock Surface Insulation against the Influence of Mine Atmosphere

Keyword(s):  
2020 ◽  
Vol 56 (3) ◽  
pp. 426-434
Author(s):  
Yu. N. Shaposhnik ◽  
A. I. Konurin ◽  
O. M. Usol’tseva ◽  
A. A. Neverov ◽  
S. A. Neverov
Keyword(s):  

Author(s):  
J. E. Morton

The main picture of the zonation of life between tide marks on British shores has been added to by a good deal of recent work, such as that of Colman (1932) and Evans (1947) at Plymouth, and the regional studies by Stephenson & Stephenson (1949). Of the more restricted special habitats within the tidal area there have been fewer accounts, though Colman (1940) has made a detailed survey of the faunas inhabiting intertidal seaweeds, which was later followed by Wieser (1952). Most recently there has appeared a paper by Glynne-Williams & Hobart (1952), working at Anglesey, which for the first time analysed clearly the composition and food relations of the restricted fauna living in crevices in this habitat. This part of the tidal zone forms an interesting meeting place of two faunal elements, those intertidal animals of terrestrial origin and those which are truly marine. In the summer of 1950 and 1951 the present writer had made a similar study in the Plymouth area, at Wembury and some other localities. The work was begun as part of an ecological study of the two marine pulmonates Leucophytia bidentata and Otina otis, and was later extended to take account of the other animals hidden in crevices and those living on the exposed rock surface throughout the upper half of the tidal zone.


2021 ◽  
Vol 1 ◽  
pp. 61-62
Author(s):  
Filip Loeckle

Abstract. The stochastic generation of discrete fracture networks (DFN) is a method for modelling fracture patterns used to assess the in situ fragmentation in a volume of rock. The DFN modelling approach is based on the assumption that the natural fragmentation of rocks is a function of the length and connectivity of the fractures within the considered volume of rock. Thus, in order to generate a site-specific DFN, the primary geometric properties of the fracture surfaces within the rock volume (especially orientation, size and fracture intensity as well as the local spatial variability) must be defined as distribution functions (Elmo et al., 2014). The required base statistics are usually obtained from fracture analysis on boreholes, exposed rock surfaces or (to a limited extent) 3D seismics (e.g. Bisdom et al., 2014; Bemis et al., 2014). We adopted a terrestrial close-range photogrammetry approach to capture several outcrops and analyse fracture traces on the exposed rock surfaces, the chosen workflow is based around the use of free and open-source software. Images were acquired from several quarries in the Weschnitzpluton, a granodioritic to quartz monzodioritic pluton in the Bergstrasse Odenwald (e.g. Altherr et al., 1999) using a consumer-grade Nikon D5300 DSLR with fixed focal length instead of a drone or Lidar-system for legal reasons, partially tree-lined outcrops and cost efficiency. Since point clouds obtained from photogrammetry are inherently dimensionless, we used a spherical target with compass and bubble level for scale and proper spatial orientation (Froideval et al., 2019). The exact geolocation is not particularly important for the task, so the use of GPS, total station or georeferenced ground control points is not necessary. Dense point clouds were computed using the open source SfM photogrammetry suite Meshroom (AliceVision, 2021), which can be used for manual or semi-automatic detection of fracture surfaces and their orientation (Schnabel et al., 2007) and to generate orthorectified images of the rock surface to trace fracture lengths and nodes in a GIS (Nyberg et al., 2018). Our investigations proved terrestrial photogrammetry to be a valuable and easily accessible tool in the documentation of natural fracture patterns and a robust base for the generation of DFN networks.


1999 ◽  
Vol 110 (1-2) ◽  
pp. 133-144
Author(s):  
P. Tripathy ◽  
A. Roy ◽  
N. Anand ◽  
S. P. Adhikary
Keyword(s):  

2020 ◽  
Vol 9 (1) ◽  
pp. 64
Author(s):  
Maija Nuppunen-Puputti ◽  
Riikka Kietäväinen ◽  
Lotta Purkamo ◽  
Pauliina Rajala ◽  
Merja Itävaara ◽  
...  

Fungi have an important role in nutrient cycling in most ecosystems on Earth, yet their ecology and functionality in deep continental subsurface remain unknown. Here, we report the first observations of active fungal colonization of mica schist in the deep continental biosphere and the ability of deep subsurface fungi to attach to rock surfaces under in situ conditions in groundwater at 500 and 967 m depth in Precambrian bedrock. We present an in situ subsurface biofilm trap, designed to reveal sessile microbial communities on rock surface in deep continental groundwater, using Outokumpu Deep Drill Hole, in eastern Finland, as a test site. The observed fungal phyla in Outokumpu subsurface were Basidiomycota, Ascomycota, and Mortierellomycota. In addition, significant proportion of the community represented unclassified Fungi. Sessile fungal communities on mica schist surfaces differed from the planktic fungal communities. The main bacterial phyla were Firmicutes, Proteobacteria, and Actinobacteriota. Biofilm formation on rock surfaces is a slow process and our results indicate that fungal and bacterial communities dominate the early surface attachment process, when pristine mineral surfaces are exposed to deep subsurface ecosystems. Various fungi showed statistically significant cross-kingdom correlation with both thiosulfate and sulfate reducing bacteria, e.g., SRB2 with fungi Debaryomyces hansenii.


2021 ◽  
Vol 11 (6) ◽  
pp. 2495
Author(s):  
Belén Ferrer ◽  
María-Baralida Tomás ◽  
David Mas

Some materials undergo hygric expansion when soaked. In porous rocks, this effect is enhanced by the pore space, because it allows water to reach every part of its volume and to hydrate most swelling parts. In the vicinity, this enlargement has negative structural consequences as adjacent elements support some compressions or displacements. In this work, we propose a normalized cross-correlation between rock surface texture images to determine the hygric expansion of such materials. We used small porous sandstone samples (11 × 11 × 30 mm3) to measure hygric swelling. The experimental setup comprised an industrial digital camera and a telecentric objective. We took one image every 5 min for 3 h to characterize the whole swelling process. An error analysis of both the mathematical and experimental methods was performed. The results showed that the proposed methodology provided, despite some limitations, reliable hygric swelling information by a non-contact methodology with an accuracy of 1 micron and permitted the deformation in both the vertical and horizontal directions to be explored, which is an advantage over traditional linear variable displacement transformers.


2021 ◽  
Vol 11 (9) ◽  
pp. 3773
Author(s):  
Simone Mineo ◽  
Giovanna Pappalardo

Infrared thermography is a growing technology in the engineering geological field both for the remote survey of rock masses and as a laboratory tool for the non-destructive characterization of intact rock. In this latter case, its utility can be found either from a qualitative point of view, highlighting thermal contrasts on the rock surface, or from a quantitative point of view, involving the study of the surface temperature variations. Since the surface temperature of an object is proportional to its emissivity, the knowledge of this last value is crucial for the correct calibration of the instrument and for the achievement of reliable thermal outcomes. Although rock emissivity can be measured according to specific procedures, there is not always the time or possibility to carry out such measurements. Therefore, referring to reliable literature values is useful. In this frame, this paper aims at providing reference emissivity values belonging to 15 rock types among sedimentary, igneous and metamorphic categories, which underwent laboratory emissivity estimation by employing a high-sensitivity thermal camera. The results show that rocks can be defined as “emitters”, with emissivity generally ranging from 0.89 to 0.99. Such variability arises from both their intrinsic properties, such as the presence of pores and the different thermal behavior of minerals, and the surface conditions, such as polishing treatments for ornamental stones. The resulting emissivity values are reported and commented on herein for each different studied lithology, thus providing not only a reference dataset for practical use, but also laying the foundation for further scientific studies, also aimed at widening the rock aspects to investigate through IRT.


2021 ◽  
pp. 101169
Author(s):  
Joanne Elkadi ◽  
Georgina E. King ◽  
Benjamin Lehmann ◽  
Frédéric Herman
Keyword(s):  

Author(s):  
Christian Horn ◽  
Oscar Ivarsson ◽  
Cecilia Lindhé ◽  
Rich Potter ◽  
Ashely Green ◽  
...  

AbstractRock art carvings, which are best described as petroglyphs, were produced by removing parts of the rock surface to create a negative relief. This tradition was particularly strong during the Nordic Bronze Age (1700–550 BC) in southern Scandinavia with over 20,000 boats and thousands of humans, animals, wagons, etc. This vivid and highly engaging material provides quantitative data of high potential to understand Bronze Age social structures and ideologies. The ability to provide the technically best possible documentation and to automate identification and classification of images would help to take full advantage of the research potential of petroglyphs in southern Scandinavia and elsewhere. We, therefore, attempted to train a model that locates and classifies image objects using faster region-based convolutional neural network (Faster-RCNN) based on data produced by a novel method to improve visualizing the content of 3D documentations. A newly created layer of 3D rock art documentation provides the best data currently available and has reduced inscribed bias compared to older methods. Several models were trained based on input images annotated with bounding boxes produced with different parameters to find the best solution. The data included 4305 individual images in 408 scans of rock art sites. To enhance the models and enrich the training data, we used data augmentation and transfer learning. The successful models perform exceptionally well on boats and circles, as well as with human figures and wheels. This work was an interdisciplinary undertaking which led to important reflections about archaeology, digital humanities, and artificial intelligence. The reflections and the success represented by the trained models open novel avenues for future research on rock art.


2021 ◽  
pp. 101212
Author(s):  
Lucas Ageby ◽  
Diego E. Angelucci ◽  
Dominik Brill ◽  
Francesco Carrer ◽  
Eike F. Rades ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document