scholarly journals Terrestrial photogrammetry: a method to gather data on fractures for DFN modelling from exposed rock surfaces

2021 ◽  
Vol 1 ◽  
pp. 61-62
Author(s):  
Filip Loeckle

Abstract. The stochastic generation of discrete fracture networks (DFN) is a method for modelling fracture patterns used to assess the in situ fragmentation in a volume of rock. The DFN modelling approach is based on the assumption that the natural fragmentation of rocks is a function of the length and connectivity of the fractures within the considered volume of rock. Thus, in order to generate a site-specific DFN, the primary geometric properties of the fracture surfaces within the rock volume (especially orientation, size and fracture intensity as well as the local spatial variability) must be defined as distribution functions (Elmo et al., 2014). The required base statistics are usually obtained from fracture analysis on boreholes, exposed rock surfaces or (to a limited extent) 3D seismics (e.g. Bisdom et al., 2014; Bemis et al., 2014). We adopted a terrestrial close-range photogrammetry approach to capture several outcrops and analyse fracture traces on the exposed rock surfaces, the chosen workflow is based around the use of free and open-source software. Images were acquired from several quarries in the Weschnitzpluton, a granodioritic to quartz monzodioritic pluton in the Bergstrasse Odenwald (e.g. Altherr et al., 1999) using a consumer-grade Nikon D5300 DSLR with fixed focal length instead of a drone or Lidar-system for legal reasons, partially tree-lined outcrops and cost efficiency. Since point clouds obtained from photogrammetry are inherently dimensionless, we used a spherical target with compass and bubble level for scale and proper spatial orientation (Froideval et al., 2019). The exact geolocation is not particularly important for the task, so the use of GPS, total station or georeferenced ground control points is not necessary. Dense point clouds were computed using the open source SfM photogrammetry suite Meshroom (AliceVision, 2021), which can be used for manual or semi-automatic detection of fracture surfaces and their orientation (Schnabel et al., 2007) and to generate orthorectified images of the rock surface to trace fracture lengths and nodes in a GIS (Nyberg et al., 2018). Our investigations proved terrestrial photogrammetry to be a valuable and easily accessible tool in the documentation of natural fracture patterns and a robust base for the generation of DFN networks.

Author(s):  
Hannes Hofmann ◽  
Tayfun Babadagli ◽  
Günter Zimmermann

The creation of large complex fracture networks by hydraulic fracturing is imperative for enhanced oil recovery from tight sand or shale reservoirs, tight gas extraction, and Hot-Dry-Rock (HDR) geothermal systems to improve the contact area to the rock matrix. Although conventional fracturing treatments may result in bi-wing fractures, there is evidence by microseismic mapping that fracture networks can develop in many unconventional reservoirs, especially when natural fracture systems are present and the differences between the principle stresses are low. However, not much insight is gained about fracture development as well as fluid and proppant transport in naturally fractured tight formations. In order to clarify the relationship between rock and treatment parameters, and resulting fracture properties, numerical simulations were performed using a commercial Discrete Fracture Network (DFN) simulator. A comprehensive sensitivity analysis is presented to identify typical fracture network patterns resulting from massive water fracturing treatments in different geological conditions. It is shown how the treatment parameters influence the fracture development and what type of fracture patterns may result from different treatment designs. The focus of this study is on complex fracture network development in different natural fracture systems. Additionally, the applicability of the DFN simulator for modeling shale gas stimulation and HDR stimulation is critically discussed. The approach stated above gives an insight into the relationships between rock properties (specifically matrix properties and characteristics of natural fracture systems) and the properties of developed fracture networks. Various simulated scenarios show typical conditions under which different complex fracture patterns can develop and prescribe efficient treatment designs to generate these fracture systems. Hydraulic stimulation is essential for the production of oil, gas, or heat from ultratight formations like shales and basement rocks (mainly granite). If natural fracture systems are present, the fracturing process becomes more complex to simulate. Our simulation results reveal valuable information about main parameters influencing fracture network properties, major factors leading to complex fracture network development, and differences between HDR and shale gas/oil shale stimulations.


Author(s):  
E. Sánchez-García ◽  
A. Balaguer-Beser ◽  
R. Taborda ◽  
J. E. Pardo-Pascual

Beach and fluvial systems are highly dynamic environments, being constantly modified by the action of different natural and anthropic phenomena. To understand their behaviour and to support a sustainable management of these fragile environments, it is very important to have access to cost-effective tools. These methods should be supported on cutting-edge technologies that allow monitoring the dynamics of the natural systems with high periodicity and repeatability at different temporal and spatial scales instead the tedious and expensive field-work that has been carried out up to date. The work herein presented analyses the potential of terrestrial photogrammetry to describe beach morphology. Data processing and generation of high resolution 3D point clouds and derived DEMs is supported by the commercial Agisoft PhotoScan. Model validation is done by comparison of the differences in the elevation among the photogrammetric point cloud and the GPS data along different beach profiles. Results obtained denote the potential that the photogrammetry 3D modelling has to monitor morphological changes and natural events getting differences between 6 and 25 cm. Furthermore, the usefulness of these techniques to control the layout of a fluvial system is tested by the performance of some modeling essays in a hydraulic pilot channel.


Fractals ◽  
2001 ◽  
Vol 09 (01) ◽  
pp. 105-128 ◽  
Author(s):  
TAYFUN BABADAGLI ◽  
KAYHAN DEVELI

This paper presents an evaluation of the methods applied to calculate the fractal dimension of fracture surfaces. Variogram (applicable to 1D self-affine sets) and power spectral density analyses (applicable to 2D self-affine sets) are selected to calculate the fractal dimension of synthetic 2D data sets generated using fractional Brownian motion (fBm). Then, the calculated values are compared with the actual fractal dimensions assigned in the generation of the synthetic surfaces. The main factor considered is the size of the 2D data set (number of data points). The critical sample size that yields the best agreement between the calculated and actual values is defined for each method. Limitations and the proper use of each method are clarified after an extensive analysis. The two methods are also applied to synthetically and naturally developed fracture surfaces of different types of rocks. The methods yield inconsistent fractal dimensions for natural fracture surfaces and the reasons of this are discussed. The anisotropic feature of fractal dimension that may lead to a correlation of fracturing mechanism and multifractality of the fracture surfaces is also addressed.


2004 ◽  
Vol 175 (5) ◽  
pp. 481-490 ◽  
Author(s):  
Frédéric Filipe ◽  
Judith Sausse

Abstract Natural fractures are characterized by rough surfaces and complex fluid flows. A large distribution of apertures (residual voids) within their walls and the presence of contact points produce heterogeneous flows (channelling). The resulting permeabilities, porosities or fluid-rock exchange surfaces cannot be realistically modelled by parallel and smooth plate models. It is therefore very important to better constrain models of the fracture planes : asperity heights and aperture distribution to be able to fix specific models of permeability in specific fracture void geometry. In this approach, a precise description of the fracture surface planes is given by providing some new quantitative data of surface roughness in the case of natural fractures. Studied fractures are sampled in a granite and a sandstone in the deep basement of the Hot Dry Rock site of Soultzsous-Forêts (Bas-Rhin, France). An original use of close-range photogrammetry is performed to quantify XYZ data on fracture walls. This methodology is presented as a non destructive, precise and accurate technology to quantify some digital terrain models (DTM) of the fracture plane topography. XYZ results are statistically treated in terms of surface roughness and tortuosity and are compared for different rocks to previous data obtained by mechanical profilometry. The results shows that the photogrammetric approach gives same order of asperity heights magnitudes as profilometry despite a shift towards more important values of roughness when close range photogrammetry uses relative autocorrelation models. The advantage of photogrammetry is that this technique gives very quick results and is non destructive when thin alteration or pulverulent deposits are present within fracture walls or in the rock matrix. The disadvantage is that a slight smoothing of data is inherent to an absolute model calibration. Finally only relative 300*300 DTM are finally chosen to match profilometry data because of their higher precision in terms of micro roughness description to compare natural fracture surfaces. In the objective of a classification of fracture roughness in specific geological contexts, the photogrammetric approach gives a good estimation of different classes of roughness in function of rock alteration and type.


Author(s):  
F. Remondino ◽  
M. Gaiani ◽  
F. Apollonio ◽  
A. Ballabeni ◽  
M. Ballabeni ◽  
...  

In the last years the image-based pipeline for 3D reconstruction purposes has received large interest leading to fully automated methodologies able to process large image datasets and deliver 3D products with a level of detail and precision variable according to the applications. Different open issues still exist, in particular when dealing with the 3D surveying and modeling of large and complex scenarios, like historical porticoes. The paper presents an evaluation of various surveying methods for the geometric documentation of ca 40km of historical porticoes in Bologna (Italy). Finally, terrestrial photogrammetry was chosen as the most flexible and productive technique in order to deliver 3D results in form of colored point clouds or textured 3D meshes accessible on the web. The presented digital products are a complementary material for the final candidature of the porticoes as UNESCO WHS.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
◽  
Richard D. Ball ◽  
Stefano Carrazza ◽  
Juan Cruz-Martinez ◽  
Luigi Del Debbio ◽  
...  

AbstractWe present the software framework underlying the NNPDF4.0 global determination of parton distribution functions (PDFs). The code is released under an open source licence and is accompanied by extensive documentation and examples. The code base is composed by a PDF fitting package, tools to handle experimental data and to efficiently compare it to theoretical predictions, and a versatile analysis framework. In addition to ensuring the reproducibility of the NNPDF4.0 (and subsequent) determination, the public release of the NNPDF fitting framework enables a number of phenomenological applications and the production of PDF fits under user-defined data and theory assumptions.


Author(s):  
I.-C. Lee ◽  
F. Tsai

A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. <br><br> In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. <br><br> The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The results presented in this paper demonstrate the potential of using panoramic images to generate 3D point clouds and 3D models. However, it is currently a manual and labor-intensive process. A research is being carried out to Increase the degree of automation of these procedures.


Author(s):  
C. Vasilakos ◽  
S. Chatzistamatis ◽  
O. Roussou ◽  
N. Soulakellis

<p><strong>Abstract.</strong> Building damage assessment caused by earthquakes is essential during the response phase following a catastrophic event. Modern techniques include terrestrial and aerial photogrammetry based on Structure from Motion algorithm and Laser Scanning with the latter to prove its superiority in accuracy assessment due to the high-density point clouds. However, standardized procedures during emergency surveys often could not be followed due to restrictions of outdoor operations because of debris or decrepit buildings, the high human presence of civil protection agencies, expedited deployment of survey team and cost of operations. The aim of this paper is to evaluate whether terrestrial photogrammetry based on a handheld amateur DSLR camera can be used to map building damages, structural deformations and facade production in an accepted accuracy comparing to laser scanning technique. The study area is the Vrisa village, Lesvos, Greece where a Mw&amp;thinsp;6.3 earthquake occurred on June 12th, 2017. A dense point cloud from some digital images created based on Structure from Motion algorithm and compared with a dense point cloud acquired by a laser scanner. The distance measurement and the comparison were conducted with the Multiscale Model to Model Cloud Comparison method. According to the results, the mean of the absolute distances between the two clouds is 0.038&amp;thinsp;m while the 94.9&amp;thinsp;% of the point distances are less than 0.1&amp;thinsp;m. Terrestrial photogrammetry proved to be an accurate methodology for rapid earthquake damage assessment thus its products were used by local authorities for the calculation of the compensation for the property loss.</p>


Sign in / Sign up

Export Citation Format

Share Document