scholarly journals Qualitative profile of volatile compounds by SPME in Dendrocalamus latiflorus, Phyllostachys pubescens, and Phyllostachys makinoi culms used as eating utensils

BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 4373-4387
Author(s):  
Minjay Chung ◽  
Sensung Cheng ◽  
Chunya Lin ◽  
Shangtzen Chang

Volatile compounds are released when bamboo culms are used as eating utensils. Volatile compounds of Dendrocalamus latiflorus, Phyllostachys pubescens, and P. makinoi culms were extracted using solid-phase microextraction (SPME). The bamboo culms were steamed or baked at different temperatures (100 °C and 230 °C) and durations (5 min, 30 min, and 60 min). Gas chromatography-mass spectrometry (GC-MS) analyses showed that, regardless of heating method and duration, P. makinoi culms comprised the most species of volatile compounds, with sesquiterpenes being the major compounds. Steaming and baking D. latiflorus culms at 100 °C for 30 min yielded more volatile compounds than baking at 230 °C. Benzenoids were the chief compounds in heated D. latiflorus and P. pubescens culms, with phenylacetaldehyde being the dominant constituent. Phenylacetaldehyde has fragrances of herb, flower, and oil. Moreover, the major volatile compound cyclosativene, which gives a terpene-like aroma, was obtained when P. makinoi culms were heated for different durations. After baking at 230 °C for 30 min, the major volatile compound released from P. makinoi culm was α-muurolene (41.19%), which produces a woody aroma. After continuous baking for 60 min, DT 1, a kind of diterpene compound, increased remarkably in relative content, while the content of α-muurolene decreased notably.

2021 ◽  
Vol 1025 ◽  
pp. 122-127
Author(s):  
Nik Fatin Nabilah binti Muhammad Nordin ◽  
Che Mohd Aizal bin Che Mohd ◽  
Saiful Nizam bin Tajuddin

This study was designed to investigate the compounds in the different types of commercial aroma used to attract swiftlets in the birdhouse. Analysis of the volatile compounds is done on two types of commercial aroma, which is categorized as floor aroma (F1, F2, F3) and top aroma (T1, T2, T3) using SPME-GC-MS. As a result, F1, F2 and F3 shows the presence of major constituents like 2-heptanone (13.53%, 3.22% and 0.37% respectively) and 2-nonanone (0.83%, 2.02%, and 0.82% respectively) using DB-1ms while 2-heptanone (5.87%, 0.78% and 0.45% respectively) and methoxy-phenyl-oxime (11.50%, 11.84% and 0.20% respectively) using DB-wax. Major constituents detected using DB-1ms for T1, T2 and T3 are 1-(2-methoxy-1-methylethoxy)-2-propanol (36.49%, 16.23% and 3.06% respectively). Meanwhile, no similar compounds detected by DB-wax for sample T1, T2 and T3. The overall findings concluded that most of the formulation used in the commercial aroma contained strong odor-producing chemicals to attract swiftlets. More studies should be done on investigating the effects of the commercial aroma towards swiftlet also on aroma made from natural substances instead of chemically produced commercial aroma.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1683
Author(s):  
Juan Carlos Solomando ◽  
Teresa Antequera ◽  
Alberto Martín ◽  
Trinidad Perez-Palacios

The main goal of the present study was evaluating the effect of enriching meat products (cooked (C-SAU) and dry-cured sausages (D-SAU)) with monolayered (Mo) and multilayered (Mu) fish oil microcapsules on the profile of volatile compounds, with special interest in lipid oxidation markers. For that, Solid-Phase Microextraction (SPME) and Gas Chromatography-Mass Spectrometry (GC-MS) were used. Significant differences were found in the volatile compound profile between Mo and Mu, which was been reflected in the meat samples. Thus, in general, volatile compounds from lipid oxidation have shown higher abundance in Mo and C-SAU and D-SAU enriched with this type of microcapsule, indicating that the wall of Mu (chitosan-maltodextrine) might protect the encapsulated bioactive compounds more effectively than that of Mo (maltodextrine). However, this finding is not reflected in the results of previous studies evaluating the sensory perception and oxidation stability of C-SAU and D-SAU, but it should be considered since unhealthy oxidation products can be formed in the enriched meat products with Mo. Thus, the addition of Mu as an omega-3 vehicle for enriching meat products may be indicated.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Songming Luo ◽  
Qiang Li ◽  
Anjun Chen ◽  
Xingyan Liu ◽  
Biao Pu

The purpose of this study was to analyze the volatile compounds in baby ginger paocai and the fresh baby ginger and identify the key aroma components that contribute to the flavor of baby ginger paocai. A total of 86 volatile compounds from the two baby ginger samples were quantified; these compounds were extracted by headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography–mass spectrometry (GC-MS). The aroma composition of baby ginger paocai was different from that of fresh baby ginger. Baby ginger paocai was characterized by the presence of aroma-active compounds which varied in concentration from 0.03 to 28.14%. Geranyl acetate was the aroma component with the highest relative content in baby ginger paocai. β-myrcene, eucalyptol, trans-β-ocimene, Z-ocimene, linalool, decanal, cis-citral, geraniol, geranyl acetate, curcumene, and β-bisabolene contributed to the overall aroma of the product of baby ginger paocai which had gone through a moderate fermentation process.


Sign in / Sign up

Export Citation Format

Share Document