scholarly journals Separation and characterization of lignin and sugars in the hydrolysate of hot water extraction of poplar wood by membrane filtration and activated carbon adsorption

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6613-6628
Author(s):  
Guoyu Tian ◽  
Yaqi Chu ◽  
Xiaoqian Chen ◽  
Xiuhong Zhong ◽  
Zhaojiang Wang ◽  
...  

Hot water extraction of poplar wood was conducted at temperatures from 190 to 200 °C for 5 to 8 min. A hemicellulose yield of 81% and a lignin yield of 38% were obtained at 200 °C for 8 min. A combined process of microfiltration, ultrafiltration, and activated carbon adsorption was developed to separate lignin and sugars in the hydrolysate of hot water extraction. Lignin recovery efficiencies of 56.7%, 26.0%, and 13.2% were attained for microfiltration, ultrafiltration, and activated carbon adsorption, respectively. The characterization of lignin revealed diversity in molecular weight and functional groups, which is beneficial for high-value valorization. The obtained hemicellulose sugars from the combined process showed a good recovery rate of 43.8% and remarkable purity of 97.5%. The purified sugars were a mixture of monomers and oligomers that consisted of arabinose, galactose, xylose, glucose, and mannose. Sugar oligomers with degrees of polymerization from 2 to 6 accounted for 21.6% of all sugars.

2007 ◽  
Vol 7 (5-6) ◽  
pp. 43-51 ◽  
Author(s):  
Y. Matsui ◽  
T. Aizawa ◽  
M. Suzuki ◽  
Y. Kawase

The musty-earthy taste and odour caused by the presence of geosmin and other compounds in tap water are major causes of consumer complaints. Although ozonation and granular activated carbon (GAC) adsorption have been practiced in water-treatment plants to remove these compounds effectively, two major problems associated with the application of these processes – formation of stringently regulated bromate ions by ozonation and unhygienic invertebrate colonisation of GAC filters – are still to be resolved. This research advanced the process of adsorption by powdered activated carbon (PAC) by reducing its particle size to the submicrometre range for microfiltration pretreatment. Adsorption pretreatment by using this super (S)-PAC removed the geosmin with vastly greater efficiency than by normal PAC. Removal was attained in a much shorter contact time and at a much lower dosage. The S-PAC was also beneficial in attenuating the transmembrane pressure rises that occurred between both physical backwashings and chemical cleanings.


2020 ◽  
Vol 146 ◽  
pp. 431-443 ◽  
Author(s):  
Isabela Pereira Dias ◽  
Shayla Fernanda Barbieri ◽  
Damian Estuardo López Fetzer ◽  
Marcos Lúcio Corazza ◽  
Joana Léa Meira Silveira

2013 ◽  
Vol 750-752 ◽  
pp. 1457-1460
Author(s):  
Xiao Jie Wang ◽  
Hong Wei Zhang ◽  
En Feng Chen ◽  
Yun Zhe Ji

t developed test devices and carried out test adopting combined process ofclarification-adsorption-membrane separationtargeted at surface water which was polluted by chemical agent VX. Investigation on purification effects of sand filtration, microfiltration, ultrafiltration, activated carbon adsorption and reverse osmosis was implemented in sections. It also researched on working principles of each section. Furthermore, comparative study has been made for adsorption performance of coaly granular activated carbon and that of shell activated carbon. The results show that the combined process can remove effectively simulation agent in water and the outlet quality complies with requirements of relevant standards.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (1) ◽  
pp. 19-26 ◽  
Author(s):  
BILJANA M. BUJANOVIC ◽  
MANGESH J. GOUNDALKAR ◽  
THOMAS E. AMIDON

In conventional pulping technologies, lignin is used mainly as a low-cost source of energy. Small quantities of industrially produced lignin are used for the production of chemicals and materials. Biorefinery technologies are emerging that have an ultimate goal of replacing fossil sources for the production of fuels and other products. To achieve this goal effectively, biorefinery technologies must take advantage of lignin as the most abundant natural aromatic polymer and use it to add higher-value products to product portfolios. Lignin has the potential to be used in making a broad range of high-quality products, including carbon fibers, thermoplastics, and oxygenated aromatic compounds. Existing processes focus primarily on the quality of cellulose and result in a severely modified and contaminated lignin of relatively low value. Lignin produced in more flexible biorefinery operations is more uniform and less contaminated than currently available industrial lignins, opening the door for broader applications of lignin and lignin products. The results of isolation and characterization of lignin dissolved during hot-water extraction and some potential applications of this lignin are discussed.


2012 ◽  
Vol 628 ◽  
pp. 532-535
Author(s):  
Xiang Hong Zhang ◽  
Han Yang ◽  
Xian Da Xie ◽  
Ying Ze Wang

Kitchen Vehicle is an indispensable equipment to guarantee the food in battlefield, which played an important role in series of activities include military exercise, flood-fighting rescue and earthquake relief. Water is a necessity in processing staple and non-staple food in field operations, so there is an urgent need to have one safety water supply device with smaller volume and lighter weight to meet the demands of field kitchen work, therefore, a small vehicular water purifier based on the membrane filtration technology plus activated carbon adsorption and ultraviolet light disinfection technology is developed.


Sign in / Sign up

Export Citation Format

Share Document