pressurized hot water extraction
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 6)

H-INDEX

25
(FIVE YEARS 0)

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6402
Author(s):  
Audrey Bianchi ◽  
Pamela R. Rivera-Tovar ◽  
Vanesa Sanz ◽  
Tania Ferreira-Anta ◽  
María Dolores Torres ◽  
...  

Aristotelia chilensis is a plant rich in phenolics and other bioactive compounds. Their leaves are discarded as waste in the maqui berry industry. A new application of these wastes is intended by the recovery of bioactive compounds using pressurized hot water extraction with conventional or microwave heating. Both technologies have been selected for their green character regarding the type of solvent and the high efficiency in shorter operation times. Extractions were performed in the temperature range 140–200 °C with a solid/liquid ratio of 1:15 (w:w). The extracts’ total phenolic content, antioxidant capacity, and saccharides content obtained with both heating methods were measured. Additionally, the thermo-rheological properties of the gelling matrix enriched with these extracts were analyzed. Optimum conditions for lyophilized extracts were found with conventional heating, at 140 °C and 20 min extraction; 250.0 mg GAE/g dry extract and 1321.5 mg Trolox/g dry extract. Close to optimum performance was achieved with microwave heating in a fraction of the time (5 min) at 160 °C (extraction), yielding extracts with 231.9 mg GAE/g dry extract of total phenolics and antiradical capacity equivalent to 1176.3 mg Trolox/g dry extract. Slightly higher antioxidant values were identified for spray-dried extracts (between 5% for phenolic content and 2.5% for antioxidant capacity). The extracts obtained with both heating methods at 200 °C contained more than 20% oligosaccharides, primarily glucose. All the formulated gelling matrices enriched with the obtained extracts displayed intermediate gel strength properties. The tested technologies efficiently recovered highly active antioxidant extracts, rich in polyphenolics, and valuable for formulating gelling matrices with potential applicability in foods and other products.



Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1645
Author(s):  
Eng Shi Ong ◽  
Christina Liu Ying Oh ◽  
Joseph Choon Wee Tan ◽  
Su Yi Foo ◽  
Chen Huei Leo

Abelmoschus esculentus L. Moench (okra) is a commonly consumed vegetable that consists of the seeds and peel component which are rich in polyphenolic compounds. The aim of this study is to utilize pressurized hot water extraction (PHWE) for the extraction of bioactive phytochemicals from different parts of okra. A single step PHWE was performed at various temperatures (60 °C, 80 °C, 100 °C and 120 °C) to determine which extraction temperature exhibits the optimum phytochemical profile, antioxidant and antidiabetic activities. The optimum temperature for PHWE extraction was determined at 80 °C and the biological activities of the different parts of okra (Inner Skin, Outer Skin and Seeds) were characterized using antioxidant (DPPH and ABTS), α-glucosidase and vasoprotective assays. Using PHWE, the different parts of okra displayed distinct phytochemical profiles, which consist of primarily polyphenolic compounds. The okra Seeds were shown to have the most antioxidant capacity and antidiabetic effects compared to other okra parts, likely to be attributed to their higher levels of polyphenolic compounds. Similarly, okra Seeds also reduced vascular inflammation by downregulating TNFα-stimulated VCAM-1 and SELE expression. Furthermore, metabolite profiling by LC/MS also provided evidence of the cytoprotective effect of okra Seeds in endothelial cells. Therefore, the use of PHWE may be an alternative approach for the environmentally friendly extraction and evaluation of plant extracts for functional food applications.



Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3343
Author(s):  
Yannick Nuapia ◽  
Kgomotso Maraba ◽  
Hlanganani Tutu ◽  
Luke Chimuka ◽  
Ewa Cukrowska

Isolation of the therapeutic cannabinoid compounds from Cannabis Sativa L. (C. Sativa) is important for the development of cannabis-based pharmaceuticals for cancer treatment, among other ailments. The main pharmacological cannabinoids are THC and CBD. However, THC also induces undesirable psychoactive effects. The decarboxylation process converts the naturally occurring acidic forms of cannabinoids, such as cannabidiolic acid (CBDA) and tetrahydrocannabinolic acid (THCA), to their more active neutral forms, known as cannabidiol (CBD) and tetrahydrocannabinol (THC). The purpose of this study was to selectively extract cannabinoids using a novel in situ decarboxylation pressurized hot water extraction (PHWE) system. The decarboxylation step was evaluated at different temperature (80–150 °C) and time (5–60 min) settings to obtain the optimal conditions for the decarboxylation-PHWE system using response surface methodology (RSM). The system was optimized to produce cannabis extracts with high CBD content, while suppressing the THC and CBN content. The identification and quantification of cannabinoid compounds were determined using UHPLC-MS/MS with external calibration. As a result, the RSM has shown good predictive capability with a p-value < 0.05, and the chosen parameters revealed to have a significant effect on the CBD, CBN and THC content. The optimal decarboxylation conditions for an extract richer in CBD than THC were set at 149.9 °C and 42 min as decarboxylation temperature and decarboxylation time, respectively. The extraction recoveries ranged between 96.56 and 103.42%, 95.22 and 99.95%, 99.62 and 99.81% for CBD, CBN and THC, respectively.



LWT ◽  
2021 ◽  
pp. 111889
Author(s):  
L. Loarce ◽  
R. Oliver-Simancas ◽  
L. Marchante ◽  
M.C. Díaz-Maroto ◽  
M.E. Alañón


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Swee Keong Yeap ◽  
Chean Yeah Yong ◽  
Umar Faruq ◽  
Hui Kian Ong ◽  
Zahiah binti Mohamed Amin ◽  
...  

Abstract Background Phyllanthus tenellus Roxb. has been traditionally used to treat inflammation and liver diseases and its medicinal property may be due to the presence of relatively high levels of hydrosable tannins. Recent report revealed that pressurized hot water extraction of P. tenellus significantly increased the concentration of hydrolysable tannins and its catabolites. Thus, this study was aimed to evaluate the in vivo toxicity and antioxidant capacity of pressurized hot water extraction of P. tenellus on healthy mice. Methods Pressurized hot water extraction P. tenellus was carried out and standardized to 7.9% hydrosable tannins. In vitro toxicity of the extract was tested on NIH 3 T3 cell by MTT assay. The cellular antioxidant level was quantified by measuring cellular level of glutathione. Oral sub-chronic toxicity (200, 1000 and 3000 mg/kg body weight) of P. tenellus extract were evaluated on healthy mice. Liver and kidney antioxidant level was quantified by measuring levels of Ferric Reducing Antioxidant Potential (FRAP), superoxide dismutase, glutathione. Results The P. tenellus extract did not induce cytotoxicity on murine NIH 3 T3 cells up to 200 μg/mL for 48 h. Besides, level of glutathione was higher in the extract treated NIH 3 T3 cells. P. tenellus extract did not cause mortality at all tested concentration. When treated with 1000 mg/kg of the extract, serum liver enzymes (ALP and ALT) and LDH were lower than normal control and mice treated with 200 mg/kg of extract. Moreover, SOD, FRAP and glutathione levels of liver of the mice treated with 200 and 1000 mg/kg of extract were higher than the normal control mice. On the other hand, when treated with 3000 mg/kg of extract, serum liver enzymes (ALP and ALT) and LDH were higher than normal mice without changing the liver SOD and glutathione level, which may contribute to the histological sign of ballooning hepatocyte. Conclusion P. tenellus extract standardized with 7.9% hydrosable tannins and their catabolites increased the antioxidant levels while reducing the nitric oxide levels in both liver and kidney without causing any acute and sub-chronic toxicity in the mice.



2021 ◽  
pp. 771-785
Author(s):  
Merichel Plaza ◽  
María Luisa Marina


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1110
Author(s):  
Eng Shi Ong ◽  
Charlene Jia Ning Pek ◽  
Joseph Choon Wee Tan ◽  
Chen Huei Leo

Quinoa is widely noted for its nutritional value. The seed is the main edible part of the plant and exists in at least three different colors: white, red and black. This study utilized a pressurized hot water extraction (PHWE) for the extraction of phytochemicals from quinoa. Chemical fingerprints with LC/UV and LC/MS using a targeted approach and pattern recognition tools were used to evaluate the quinoa extracts. The antioxidant properties for various types of quinoa were evaluated using DPPH assay, ABTS assay and the cytoprotective effect of quinoa extracts were investigated in HMEC-1 cell line. Distinctive chemical profiles obtained from black and red quinoa were well correlated with the antioxidant activities and cytoprotective effects. The combination of PHWE, chemical standardization with LC/UV and LC/MS, pattern recognition tools and biological assay provided an approach for the evaluation and eventual production of quinoa extracts for functional food.



Sign in / Sign up

Export Citation Format

Share Document