scholarly journals Vibrational characteristics of four wood species commonly used in wood products

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7101-7111
Author(s):  
Wengang Hu ◽  
Shuang Li ◽  
Yan Liu

The effects of the moisture content, density, and striking direction of a hammer on the vibrational characteristics, i.e., the fundamental frequency and dynamic modulus of elasticity, of four wood species, i.e., poplar (Populus tomentosa), mahogany (Swietenia mahagoni), beech (Fagus orientalis), and ash (Fraxinus excelsior), commonly used in wood products were investigated, aiming to provide basic evidence for the nondestructive testing of wood materials. The results showed that the effect of the wood species on the fundamental frequency, dynamic modulus of elasticity, and static modulus of elasticity was statistically significant. The dynamic moduli of elasticity of the four wood species were higher than the corresponding static moduli of elasticity. The effect of the striking direction on the dynamic modulus of elasticity was not significant, indicating that no matter where the hammer struck, i.e., radial and tangential surfaces, the fundamental frequency was essentially constant. Negative relationships were found between the fundamental frequency and the density and moisture when the data of the four wood species were viewed as a population sample. The vibrational characteristics of each wood species varied, which can be applied to the nondestructive testing of wood.

2011 ◽  
Vol 121-126 ◽  
pp. 4254-4258 ◽  
Author(s):  
Gui Wen Yu ◽  
Ying Cheng Hu ◽  
Ji You Gu

The relativity was evaluated between dynamic modulus of elasticity (MOE) and static MOE, in order to assess the potential of using nondestructive testing (NDT) method as a checking tool for mechanical properties of wood-plastic structural plates. The dynamic MOE was evaluated on a FFT system, and the static MOE was determined by three point bending test. All of specimens were made of polyethylene(PE)and poplar flour. A significant correlation between the dynamic MOE and the static MOE was obtained from relativity analysis. These results suggest that the NDT method could be appropriate to estimate the dynamic MOE of specimens with different thickness.


Holzforschung ◽  
2010 ◽  
Vol 64 (4) ◽  
Author(s):  
Eduardo Luiz Longui ◽  
Daniel Romeu Lombardi ◽  
Edenise Segala Alves

Abstract Caesalpinia echinata Lam. (pau-brasil) is a Brazilian tree with symbolic character for Brazilian forestry, which is at risk of extinction because of illegal logging activities and exportation as raw material for bows of string instruments. Additional studies are required to select substitutes for pau-brasil, i.e., other wood species are being sought with potentially suitable characteristics for bow manufacture. The present paper is dedicated to the evaluation of six native Brazilian woods by comparing their anatomical features, specific gravity, speed of sound propagation, and dynamic modulus of elasticity in relation to the corresponding properties of C. echinata that are considered as standard for bow manufacture. The results showed that length, diameter, lumen diameter, and wall thickness of fibers are the most important variables contributing to specific gravity. Additionally, ray dimensions influenced sonic velocity. The values of dynamic modulus of elasticity are directly related to dimensions of rays and fibers. Among the six woods included in this study, Dipteryx spp., Handroanthus spp., and Hymenaea spp. were considered as the best alternatives to C. echinata wood as sources of bow construction. The bows from the first two woods were already tested by professional musicians and their suitability was certified. The Diplotropis spp. wood also showed promising characteristics. Mezilaurus itauba and Astronium lecointei do not have the necessary properties for bows.


Akustika ◽  
2020 ◽  
pp. 45-50
Author(s):  
Alena Rohanová

This paper explores the analysis of sound speeds in the longitudinal direction and their reduction to the reference moisture content w = 12 %. The sound speed cw was determined with Sylvatest Duo device. Moisture content of beech sawmill assortments (round timber: N = 16, logs: N = 2 × 16, structural boards: N = 54) in the range of 12 – 72 % was measured. For the analysis purposes, the sound speed was converted to reference conditions (c12, uref = 12%). A second-degree polynomial (parabola) with a regression equation of the form: c// = 5649 - 27,371 × w + 0.0735 × w2 was used to convert cw to c12, and correction of measured and calculated values was used as well. The sound speeds c12 in sawmill assortments (c12,round, c12,log, c12,board) were evaluated by linear dependences. Dependence was not confirmed for c12,round and c12,board1 (r = 0.168), in contrast for c12,round and c12,log2 the dependence is statistically very significant (r = 0.634). The results of testing showed that the most suitable procedure for predicting quality of structural timber is the first step round timber – log2, the second step: log2 - board2. More exact results of the construction boards were obtained from log2 than from log1. The sound speed is used in the calculation of dynamic modulus of elasticity (Edyn). EN 408 mentions the possibility of using dynamic modulus of elasticity as an alternative method in predicting the quality of structural timber.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 104
Author(s):  
Fernando A. N. Silva ◽  
João M. P. Q. Delgado ◽  
António C. Azevedo ◽  
Tahlaiti Mahfoud ◽  
Abdelhafid Khelidj ◽  
...  

Early deterioration of reinforced concrete foundations has been often reported in recent years. This process is usually characterized by an extensive mapping cracking process on concrete surfaces that results from several types of Internal Swelling Reaction (ISR). In this paper, a real case study of a tall reinforced concrete building with a severe deterioration process installed in its deep foundations is discussed. Laboratory tests were performed in concrete drilled cores extracted from a deep pile cap block 19 years after the beginning of construction. Tests to assess the compressive strength, the static and the dynamic modulus of elasticity, the gas permeability, and electron microscopy scanning to find out the primary mechanism responsible for the deterioration observed during in situ inspections. Chemical alterations of materials were observed in concrete cores, mainly due to Delayed Ettringite Formation (DEF), which significantly affected the integrity and durability of the structure. Dynamic modulus of elasticity showed to be a better indicator of damage induced by ISR in concrete than compressive strength. Procedures to strengthen the deteriorated elements using prestressing proved to be an efficient strategy to recover the structural integrity of pile caps deteriorated due to expansions due to ISR.


Holzforschung ◽  
2007 ◽  
Vol 61 (4) ◽  
pp. 414-418 ◽  
Author(s):  
Cheng-Jung Lin ◽  
Ming-Jer Tsai ◽  
Chia-Ju Lee ◽  
Song-Yung Wang ◽  
Lang-Dong Lin

Abstract The effects of ring characteristics on the compressive strength and dynamic modulus of elasticity of seven softwood species in Taiwan were examined. The results revealed good correlation between compressive strength and dynamic modulus of elasticity obtained using an ultrasonic wave technique (correlation coefficient r=0.77–0.86). Overall, compressive strength increased with decreasing ring width parameters and increasing ring density parameters. Ring density was related to compressive strength, but was not the sole factor affecting the wood strength. According to our statistical analysis, compressive strength was affected by various ring characteristics. Relationships between ring characteristics and compressive strength are influenced by the anatomic direction. Results revealed that earlywood density and minimum density in a ring are equally important variables for evaluating the compressive strength of wood.


2013 ◽  
Vol 401-403 ◽  
pp. 1119-1123 ◽  
Author(s):  
Wen Shu Lin ◽  
Jin Zhuo Wu

The elm wood samples were tested by the technique of stress wave, and the testing results were analyzed by using the statistic software of SPSS. The results showed that the moister content of wood, wood crack, the sizes of holes and numbers of holes have significant influence on propagation parameters and dynamic modulus of elasticity. Under the same specifications, the propagation time of the stress wave was longer in the wood with holes or cracks than the perfect wood samples, and the time become longer with the increasing the sizes and numbers of holes or cracks. The studying results of the thesis will provide a sound background for the application of stress-wave technique in detecting the inner defects of wood products and other wooden structures.


1942 ◽  
Vol 9 (3) ◽  
pp. A129-A135
Author(s):  
C. O. Harris

Abstract The purpose of the investigation described in this paper was to obtain information concerning the dynamic properties of rubber bonded to metal. Two properties of rubber were measured (a) the internal damping and (b) the dynamic modulus of elasticity. Two types of specimens were tested (a) rubber cylinders bonded to steel cylinders at the ends and stressed in compression and (b) specimens of rubber bonded to steel and stressed in shear. All specimens were of the same stock, 5140-V-4, manufactured by the U. S. Rubber Company. The hardness, as measured by the durometer, varied from 32 to 40. In the process of bonding to the steel, a 1/32-in. layer of 60-durometer stock was added adjacent to each piece of steel. This represents standard practice of the U. S. Rubber Company in bonding soft stock to metal. All specimens were cured for 30 min at 279 F.


Sign in / Sign up

Export Citation Format

Share Document