scholarly journals An elegant operational matrix based on harmonic numbers: Effective solutions for linear and nonlinear fourth-order two point boundary value problems

2016 ◽  
Vol 21 (4) ◽  
pp. 448-464 ◽  
Author(s):  
Waleed M. Abd-Elhameed

This paper analyzes the solution of fourth-order linear and nonlinear two point boundary value problems. The suggested method is quite innovative and it is completely different from all previous methods used for solving such kind of boundary value problems. The method is based on employing an elegant operational matrix of derivatives expressed in terms of the well-known harmonic numbers. Two algorithms are presented and implemented for obtaining new approximate solutions of linear and nonlinear fourth-order boundary value problems. The two algorithms rely on employing the new introduced operational matrix for reducing the differential equations with their boundary conditions to systems of linear or nonlinear algebraic equations which can be efficiently solved by suitable solvers. For this purpose, the two spectral methods namely, Petrov-Galerkin and collocation methods are applied. Some illustrative examples are considered aiming to ascertain the wide applicability, validity, and efficiency of the two proposed algorithms. The obtained numerical results are satisfactory and the approximate solutions are very close to the analytical solutions and they are more accurate than those obtained by some other existing techniques in literature.

2019 ◽  
Vol 4 (8) ◽  
pp. 49-54
Author(s):  
Abdurkadir Edeo Gemeda

In this paper, generalized shifted Legendre polynomial approximation on a given arbitrary interval has been designed to find an approximate solution of a given second order nonlinear two point boundary value problems of ordinary differential equations. Here an approach using Tau method based on Legendre operational matrix of differentiation [2] & [5] has been addressed to generate the nonlinear systems of algebraic equations. The unknown Legendre coefficients of these nonlinear systems are the solutions of the system and they have been solved by continuation method. These unknown Legendre coefficients are then used to write the approximate solutions to the second order nonlinear two point boundary value problems. The validity and efficiency of the method has also been illustrated with numerical examples and graphs assisted by MATLAB.


2004 ◽  
Vol 02 (01) ◽  
pp. 71-85 ◽  
Author(s):  
YUJI LIU ◽  
WEIGAO GE

In this paper, we study four-point boundary value problems for a fourth-order ordinary differential equation of the form [Formula: see text] with one of the following boundary conditions: [Formula: see text] or [Formula: see text] Growth conditions on f which guarantee existence of at least three positive solutions for the problems (E)–(B1) and (E)–(B2) are imposed.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Muhammad Asim Khan ◽  
Shafiq Ullah ◽  
Norhashidah Hj. Mohd Ali

The objective of this paper is to obtain an approximate solution for some well-known linear and nonlinear two-point boundary value problems. For this purpose, a semianalytical method known as optimal homotopy asymptotic method (OHAM) is used. Moreover, optimal homotopy asymptotic method does not involve any discretization, linearization, or small perturbations and that is why it reduces the computations a lot. OHAM results show the effectiveness and reliability of OHAM for application to two-point boundary value problems. The obtained results are compared to the exact solutions and homotopy perturbation method (HPM).


Sign in / Sign up

Export Citation Format

Share Document