scholarly journals Coexistence of generalized synchronization and inverse generalized synchronization between chaotic and hyperchaotic systems

2018 ◽  
Vol 23 (4) ◽  
pp. 583-598 ◽  
Author(s):  
Ahlem Gasri ◽  
Adel Ouannas ◽  
Kayode S. Ojo ◽  
Viet-Thanh Pham

In this paper, we present new schemes to synchronize different dimensional chaotic and hyperchaotic systems. Based on coexistence of generalized synchronization (GS) and inverse generalized synchronization (IGS), a new type of hybrid chaos synchronization is constructed. Using Lyapunov stability theory and stability theory of linear continuous-time systems, some sufficient conditions are derived to prove the coexistence of generalized synchronization and inverse generalized synchronization between 3D master chaotic system and 4D slave hyperchaotic system. Finally, two numerical examples are illustrated with the aim to show the effectiveness of the approaches developed herein.

2008 ◽  
Vol 15 (04) ◽  
pp. 371-382 ◽  
Author(s):  
M. M. Al-sawalha ◽  
M. S. M. Noorani

This paper brings attention to hyperchaos anti-synchronization between two identical and distinctive hyperchaotic systems using active control theory. The sufficient conditions for achieving anti-synchronization of two high dimensional hyperchaotic systems is derived based on Lyapunov stability theory, where the controllers are designed by using the sum of relevant variables in hyperchaotic systems. Numerical results are presented to justify the theoretical analysis strategy.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Tianzeng Li ◽  
Yu Wang ◽  
Yong Yang

In this paper, the synchronization of fractional-order chaotic systems is studied and a new fractional-order controller for hyperchaos synchronization is presented based on the Lyapunov stability theory. The proposed synchronized method can be applied to an arbitrary four-dimensional fractional hyperchaotic system. And we give the optimal value of control parameters to achieve synchronization of fractional hyperchaotic system. This approach is universal, simple, and theoretically rigorous. Numerical simulations of several fractional-order hyperchaotic systems demonstrate the universality and the effectiveness of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Junjian Huang ◽  
Chuandong Li ◽  
Wei Zhang ◽  
Pengcheng Wei ◽  
Qi Han

Different from the most existing results, in this paper an intermittent control scheme is designed to achieve lag synchronization of coupled hyperchaotic systems. Several sufficient conditions ensuring lag synchronization are proposed by rigorous theoretical analysis with the help of the Lyapunov stability theory. Numerical simulations are also presented to show the effectiveness and feasibility of the theoretical results.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Adel Ouannas ◽  
Raghib Abu-Saris

The problem of matrix projective synchronization (MPS) in discrete-time chaotic systems is investigated, and a new type of discrete chaos synchronization called inverse matrix projective synchronization (IMPS) is introduced. Sufficient conditions are derived for achieving MPS and IMPS between chaotic dynamical systems in discrete-time of different and identical dimensions. Based on new control schemes, Lyapunov stability theory, and stability theory of linear dynamical systems in discrete-time, some synchronization criteria are obtained. Numerical examples and simulations are used to illustrate the use of the proposed schemes.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 174-182 ◽  
Author(s):  
Adel Ouannas ◽  
Giuseppe Grassi ◽  
Abdulrahman Karouma ◽  
Toufik Ziar ◽  
Xiong Wang ◽  
...  

AbstractIn this paper, a new type of synchronization for chaotic (hyperchaotic) maps with different dimensions is proposed. The novel scheme is called F – M synchronization, since it combines the inverse generalized synchronization (based on a functional relationship F) with the matrix projective synchronization (based on a matrix M). In particular, the proposed approach enables F – M synchronization with index d to be achieved between n-dimensional drive system map and m-dimensional response system map, where the synchronization index d corresponds to the dimension of the synchronization error. The technique, which exploits nonlinear controllers and Lyapunov stability theory, proves to be effective in achieving the F – M synchronization not only when the synchronization index d equals n or m, but even if the synchronization index d is larger than the map dimensions n and m. Finally, simulation results are reported, with the aim to illustrate the capabilities of the novel scheme proposed herein.


2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
Yi Zuo ◽  
Xinsong Yang

Asymptotic synchronization for a class of coupled networks with nondelayed and delayed couplings is investigated. A distinct feature of the network is that all the dynamical nodes are affected by uncertain nonlinear nonidentical perturbations. In order to synchronize the network onto a given isolate trajectory, a novel adaptive controller is designed to overcome the effects of the nonidentical uncertain nonlinear perturbations. The designed controller has better robustness than classical adaptive controller, since it can realize the synchronization goal whether the nodes have these perturbations or not. Based on the Lyapunov stability theory and the Barbalat lemma, sufficient conditions guaranteeing the asymptotic synchronization of the coupled network are derived. Two examples with numerical simulations are given to illustrate the effectiveness of the theoretical results. Simulations also demonstrate that our adaptive controller has better robustness than existing ones.


Author(s):  
Eric Donald Dongmo ◽  
Kayode Stephen Ojo ◽  
Paul Woafo ◽  
Abdulahi Ndzi Njah

This paper introduces a new type of synchronization scheme, referred to as difference synchronization scheme, wherein the difference between the state variables of two master [slave] systems synchronizes with the state variable of a single slave [master] system. Using the Lyapunov stability theory and the active backstepping technique, controllers are derived to achieve the difference synchronization of three identical hyperchaotic Liu systems evolving from different initial conditions, as well as the difference synchronization of three nonidentical systems of different orders, comprising the 3D Lorenz chaotic system, 3D Chen chaotic system, and the 4D hyperchaotic Liu system. Numerical simulations are presented to demonstrate the validity and feasibility of the theoretical analysis. The development of difference synchronization scheme has increases the number of existing chaos synchronization scheme.


2013 ◽  
Vol 27 (32) ◽  
pp. 1350197
Author(s):  
XING-YUAN WANG ◽  
SI-HUI JIANG ◽  
CHAO LUO

In this paper, a chaotic synchronization scheme is proposed to achieve adaptive synchronization between a novel hyperchaotic system and the hyperchaotic Chen system with fully unknown parameters. Based on the Lyapunov stability theory, an adaptive controller and parameter updating law are presented to synchronize the above two hyperchaotic systems. The corresponding theoretical proof is given and numerical simulations are presented to verify the effectiveness of the proposed scheme.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Qing Wang ◽  
Maopeng Ran ◽  
Chaoyang Dong ◽  
Maolin Ni

We present an improved antiwindup design for linear invariant continuous-time systems with actuator saturation nonlinearities. In the improved approach, two antiwindup compensators are simultaneously designed: one activated immediately at the occurrence of actuator saturation and the other activated in anticipatory of actuator saturation. Both the static and dynamic antiwindup compensators are considered. Sufficient conditions for global stability and minimizing the inducedL2gain are established, in terms of linear matrix inequalities (LMIs). We also show that the feasibility of the improved antiwindup is similar to the traditional antiwindup. Benefits of the proposed approach over the traditional antiwindup and a recent innovative antiwindup are illustrated with well-known examples.


Author(s):  
KACZOREK TADEUSZ

The realization problem for positive, continuous-time linear single-input, single-output systems with delays is formulated and solved. Sufficient conditions for the existence of positive realizations of a given proper transfer function are established. A procedure for computation of positive minimal realizations is presented and illustrated by an example.


Sign in / Sign up

Export Citation Format

Share Document