scholarly journals On Matrix Projective Synchronization and Inverse Matrix Projective Synchronization for Different and Identical Dimensional Discrete-Time Chaotic Systems

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Adel Ouannas ◽  
Raghib Abu-Saris

The problem of matrix projective synchronization (MPS) in discrete-time chaotic systems is investigated, and a new type of discrete chaos synchronization called inverse matrix projective synchronization (IMPS) is introduced. Sufficient conditions are derived for achieving MPS and IMPS between chaotic dynamical systems in discrete-time of different and identical dimensions. Based on new control schemes, Lyapunov stability theory, and stability theory of linear dynamical systems in discrete-time, some synchronization criteria are obtained. Numerical examples and simulations are used to illustrate the use of the proposed schemes.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Adel Ouannas

The problems of full-state hybrid projective synchronization (FSHPS) and inverse full-state hybrid projective synchronization (IFSHPS) for general discrete chaotic systems are investigated in 2D. Based on nonlinear control method and Lyapunov stability theory, new controllers are designed to study FSHPS and IFSHPS, respectively, for 2D arbitrary chaotic systems in discrete-time. Numerical example and simulations are used to validate the main results of this paper.


1996 ◽  
Vol 2 (4) ◽  
pp. 277-299 ◽  
Author(s):  
Xinzhi Liu ◽  
Allan R. Willms

Necessary and sufficient conditions for impulsive controllability of linear dynamical systems are obtained, which provide a novel approach to problems that are basically defined by continuous dynamical systems, but on which only discrete-time actions are exercised. As an application, impulsive maneuvering of a spacecraft is discussed.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Jui-sheng Lin ◽  
Neng-Sheng Pai ◽  
Her-Terng Yau

This study demonstrates the modified projective synchronization in Chen-Lee chaotic system. The variable structure control technology is used to design the synchronization controller with input nonlinearity. Based on Lyapunov stability theory, a nonlinear controller and some generic sufficient conditions can be obtained to guarantee the modified projective synchronization, including synchronization, antisynchronization, and projective synchronization in spite of the input nonlinearity. The numerical simulation results show that the synchronization and antisynchronization can coexist in Chen-Lee chaotic systems. It demonstrates the validity and feasibility of the proposed controller.


Author(s):  
Adel Ouannas

In this paper, a new type of chaos synchronization in discrete-time is proposed by combining matrix projective synchronization (MPS) and generalized synchronization (GS). This new chaos synchronization type allows us to study synchronization between different dimensional discrete-time chaotic systems in different dimensions. Based on nonlinear controllers and Lyapunov stability theory, effective control schemes are introduced and new synchronization criterions are derived. Numerical simulations are used to validate the theoretical results and to verify the effectiveness of the proposed schemes.


Author(s):  
Junwei Sun ◽  
Suxia Jiang ◽  
Guangzhao Cui ◽  
Yanfeng Wang

Based on combination synchronization of three chaotic systems and combination–combination synchronization of four chaotic systems, a novel scheme of dual combination synchronization is investigated for six chaotic systems in the paper. Using combined adaptive control and Lyapunov stability theory of chaotic systems, some sufficient conditions are attained to realize dual combination synchronization of six chaotic systems. The corresponding theoretical proofs and numerical simulations are presented to demonstrate the effectiveness and correctness of the dual combination synchronization. Due to the complexity of dual combination synchronization, it will be more secure and interesting to transmit and receive signals in application of communication.


2011 ◽  
Vol 22 (11) ◽  
pp. 1281-1291 ◽  
Author(s):  
RANCHAO WU ◽  
DONGXU CAO

In this paper, function projective synchronization of chaotic systems is investigated through nonlinear adaptive–impulsive control. To achieve synchronization, suitable nonlinear continuous and impulsive controllers are designed, according to invariant principle of impulsive dynamical systems. Sufficient conditions are given to ensure the synchronization. Numerical simulation results show the effectiveness of the proposed scheme.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaobing Zhou ◽  
Lianglin Xiong ◽  
Xiaomei Cai

This paper investigates the combination-combination synchronization of four nonlinear complex chaotic systems. Based on the Lyapunov stability theory, corresponding controllers to achieve combination-combination synchronization among four different nonlinear complex chaotic systems are derived. The special cases, such as combination synchronization and projective synchronization, are studied as well. Numerical simulations are given to illustrate the theoretical analysis.


2014 ◽  
Vol 28 (04) ◽  
pp. 1450013 ◽  
Author(s):  
PI LI ◽  
XING-YUAN WANG ◽  
NA WEI ◽  
SI-HUI JIANG ◽  
XIU-KUN WANG

This paper further investigates the adaptive full state hybrid projective synchronization (FSHPS) of hyper-chaotic systems — CYQY system with fully unknown parameters and perturbations. Based on the Lyapunov stability theory, adaptive controllers and updating laws of parameters can be designed for achieving the FSHPS of the CYQY hyper-chaotic systems with the same and different structures. Two groups numerical simulations are provided to verify the effectiveness of the proposed scheme.


2018 ◽  
Vol 23 (4) ◽  
pp. 583-598 ◽  
Author(s):  
Ahlem Gasri ◽  
Adel Ouannas ◽  
Kayode S. Ojo ◽  
Viet-Thanh Pham

In this paper, we present new schemes to synchronize different dimensional chaotic and hyperchaotic systems. Based on coexistence of generalized synchronization (GS) and inverse generalized synchronization (IGS), a new type of hybrid chaos synchronization is constructed. Using Lyapunov stability theory and stability theory of linear continuous-time systems, some sufficient conditions are derived to prove the coexistence of generalized synchronization and inverse generalized synchronization between 3D master chaotic system and 4D slave hyperchaotic system. Finally, two numerical examples are illustrated with the aim to show the effectiveness of the approaches developed herein.


2013 ◽  
Vol 23 (2) ◽  
pp. 229-242
Author(s):  
Ayub Khan ◽  
Ram Pravesh Prasad

In this paper, we discuss anti-synchronization between two identical new chaotic systems and anti-synchronization between another two identical new chaotic systems by active nonlinear control. The sufficient conditions for achieving the anti-synchronization of two new chaotic systems are derived based on Lyapunov stability theory. Numerical simulations are provided for illustration and verification of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document