Electron beam irradiation of textile effluents and non-ionic ethoxylated surfactant for toxicity and color removal

2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Sueli Ivone Borrely ◽  
Leonardo Gondim de Andrade Silva ◽  
Stephanie Valência Del Sole ◽  
Vanessa Silva Granadeiro Garcia ◽  
Nathalia Fonseca Boiani ◽  
...  

Textile industry has an expressive scenario in the world economy and Brazil is the 5th in the textile production. By 2015, Brazilian textile production represented US $ 39.3 billion, accounting for more than 1.8 million tons of fabric. The effluents from textile industry are highlighted by quantity of wastewater discharged and variety of substances (dyes, bleaching agents, surfactants, salts, acids, among others). Such compounds often prove to be toxic to aquatic biota. This present study aims to assess toxicity of whole effluents, before and after irradiation (by electron beam accelerator, EBI). In addition, the reduction of the effluent color after irradiation is also very important. Daphnia similis and Vibrio fischeri were the biological systems applied for toxicity evaluations.  Previous results demonstrated the surfactant as the main toxic compound, in the untreated and irradiated forms, EC 50 = 0.44 ppm ± 0.02 (untreated); EC 50 = 0.46 % ± 0.07 (irradiated). The irradiation was effective for reducing color of the effluent, starting from 0.5 kGy. EB irradiation may be proposed as an alternative treatment for the final effluent from textile processing, mainly for reuse purposes.

2020 ◽  
pp. 2000143
Author(s):  
Vivek Jaiswal ◽  
Kauslesh Pan Singh Rawat ◽  
Arijit Dutta Gupta ◽  
Vivek Bhadauria ◽  
Uttam Chavan ◽  
...  

2013 ◽  
Vol 770 ◽  
pp. 370-373 ◽  
Author(s):  
Pannipa Noithong ◽  
Panee Pakkong ◽  
Kittisakchai Naemchanthara

Study on the electron beam irradiation color change induction of spodumene (LiAlSi2O6) samples, which color exhibit green, pink and colorless. Characteristic the electron-beam irradiation dose were selected 30,000 kGy, 40,000 kGy and 50,000 kGy. The color and fading of spodumene samples were analyzed by UV-VIS spectrophotometer , crystal structure were determined by X-ray diffraction (XRD) spectrometer, free radical species of impurities were determined by Electron Spin Resonance (ESR) spectrometer before and after irradiation. The results revealed the color of spodumene samples changed after irradiation, from green spodumene became a little darker color, pink spodumene became green color, colorless spodumene became pink to purple color the results of the color analysis and fading displayed on the CIE L* a* b* color system, color change spodumene samples were determined by values changed of a* and b*. Color fade of spodumene were determined by values changed of L*. The results of all samples crystal structure analysis were shown on the XRD patterns of the JCPDS No. 89-6662 (Spodumene) with monoclinic structure. The radical analysis results of impurity elements, green and pink only appear the ESR pattern of manganese (Mn2+), and chromium (Cr3+), respectively. It can be conclusion that intensity of color change depend on the irradiation dose and impurity elements in spodumene samples.


2008 ◽  
Vol 64 (8) ◽  
pp. P.252-P.257
Author(s):  
SATOKO OKUBAYASHI ◽  
TERUO HORI

Meat Science ◽  
2008 ◽  
Vol 80 (3) ◽  
pp. 903-909 ◽  
Author(s):  
Joong-Ho Kwon ◽  
Youngju Kwon ◽  
Ki-Chang Nam ◽  
Eun Joo Lee ◽  
Dong U. Ahn

2016 ◽  
Vol 41 ◽  
pp. 87-95 ◽  
Author(s):  
Jian Jun Hu ◽  
Lin Jiang Chai ◽  
Hong Bin Xu ◽  
Chao Ping Ma ◽  
Shu Bin Deng

Cr layer was fabricated on 40Cr steel by electric brush plating process and then treated by high current pulsed electron beam irradiation technique. Surface microstructures of specimens before and after the irradiation were investigated. Results show that Cr surface is composed of uniformly distributed small nodule units which are composed of fine Cr particles smaller than 100nm. After high current pulsed electron beam treatment, many cracks are found on surface. The main reason is possibly due to the quasi-static thermal stresses accumulated along the surface of the specimens during the electron beam treatment. The surface grain grow from Cr particles because of heating by electron beam, and their size is less than 200nm.


2015 ◽  
Vol 220-221 ◽  
pp. 627-632 ◽  
Author(s):  
Joanna Maszybrocka ◽  
Adrian Barylski ◽  
Jerzy Cybo

The paper presents changes in UHMWPE morphology and structure caused by irradiation with an electron beam and plastic deformation. The input material consisted of two grades of polyethylene, i.e. GUR 1050 and GUR 1020 (Poly Hi Solidur Medi TECH), used for producing the bearing components of endoprostheses applied in total joint alloplasty. Tests involved three groups of samples: the ones subjected to modification through radiation (N) only, those modified by plastic deformation before (ON) and after (NO) irradiation with an electron beam (N). The obtained variants were subjected to comprehensive morphological and structural tests, which made it possible to document changes in the lamellar structure (SEM) and orientation of the crystalline structure (SAXS) as well as to determine the content of the crystalline phase (DSC) and to define crosslinking density.


Sign in / Sign up

Export Citation Format

Share Document