Glycosylation-related Diagnostic and Therapeutic Drug Target Markers in Hepatocellular Carcinoma

2015 ◽  
Vol 24 (3) ◽  
pp. 349-357 ◽  
Author(s):  
Michel E. Watson ◽  
Luke A. Diepeveen ◽  
Keith A. Stubbs ◽  
George C. Yeoh

Glycosylation of cell surface proteins regulate critical cellular functions including migration, growth, proliferation, adhesion and apoptosis. Tumorigenic cells possess gene mutations that alter glycosylation enzyme and substrate quantities resulting in glycosylation changes on the surface of the malignant cell. This may lead to metastasis, uncontrolled proliferation and the inhibition of apoptosis all of which are the hallmarks of cancer. The prevalence of hepatocellular carcinoma (HCC) is increasing worldwide, and as a consequence there is a need for improved diagnostic, prognostic and treatment strategies. Currently, the diagnosis of HCC utilises specific glycosylation markers in the serum of patients; however, the efficacy of diagnosis would be further enhanced by including cancer stem cell-specific and novel HCC-associated glycosylation markers. Their application will facilitate earlier, more sensitive diagnoses and reliable staging of the cancer leading to a more effective treatment.

Author(s):  
Yankel Chekli ◽  
Caroline Peron-Cane ◽  
Dario Dell’Arciprete ◽  
Jean-François Allemand ◽  
Chenge Li ◽  
...  

AbstractBacterial proteins exported to the cell surface play key cellular functions. However, despite the interest to study the localization of surface proteins such as adhesins, transporters or hydrolases, monitoring their dynamics in live imaging remains challenging, due to the limited availability of fluorescent probes remaining functional after secretion. In this work, we used the Escherichia coli intimin and the Listeria monocytogenes InlB invasin as surface exposed scaffolds fused with the recently developed chemogenetic fluorescent reporter protein FAST. Using both membrane permeant (HBR-3,5DM) and non-permeant (HBRAA-3E) fluorogens that fluoresce upon binding to FAST, we demonstrated that fully functional FAST can be exposed at the cell surface and specifically tagged on the external side of the bacterial envelop in both diderm and monoderm bacteria. Our work opens new avenues to study of the organization and dynamics of the bacterial cell surface proteins.


2021 ◽  
Author(s):  
Lanlan Chen ◽  
Wanzhen Chen ◽  
Guo Liu ◽  
Jingying Li ◽  
Chunhua Lu ◽  
...  

Nucleic acid-based molecular computation for cellular applications, including specific interactions with cell surface proteins, biosensing, mimicking cellular behaviors, and engineering cellular functions.


2003 ◽  
Vol 70 ◽  
pp. 253-262 ◽  
Author(s):  
Motoharu Seiki ◽  
Hidetoshi Mori ◽  
Masahiro Kajita ◽  
Takamasa Uekita ◽  
Yoshifumi Itoh

Membrane-type 1 matrix metalloproteinase (MT1-MMP) is an integral membrane proteinase that performs processing of cell surface proteins and degradation of extracellular matrix (ECM) components. Through these proteolytic events, MT1-MMP regulates various cellular functions, including ECM turnover, promotion of cell migration and invasion, and morphogenic responses to extracellular stimuli. MT1-MMP has to be regulated strictly to accomplish its function appropriately at various steps, including at the transcriptional and post-translational levels. MT1-MMP was originally identified as an invasion-promoting enzyme expressed in malignant tumour cells, and also as a specific activator of proMMP-2, which is believed to play a role in invasion of the basement membrane. Since then, it has attracted attention as a membrane-associated MMP that promotes cancer cell invasion and angiogenesis by endothelial cells. Although MT1-MMP has now become one of the best characterized enzymes in the MMP family, there remain numerous unanswered questions. In this chapter, we summarize our recent findings on how MT1-MMP is regulated during cell migration, and how cell migration is regulated by MT1-MMP.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yankel Chekli ◽  
Caroline Peron-Cane ◽  
Dario Dell’Arciprete ◽  
Jean-François Allemand ◽  
Chenge Li ◽  
...  

Abstract Bacterial proteins exported to the cell surface play key cellular functions. However, despite the interest to study the localisation of surface proteins such as adhesins, transporters or hydrolases, monitoring their dynamics in live imaging remains challenging, due to the limited availability of fluorescent probes remaining functional after secretion. In this work, we used the Escherichia coli intimin and the Listeria monocytogenes InlB invasin as surface exposed scaffolds fused with the recently developed chemogenetic fluorescent reporter protein FAST. Using both membrane permeant (HBR-3,5DM) and non-permeant (HBRAA-3E) fluorogens that fluoresce upon binding to FAST, we demonstrated that fully functional FAST can be exposed at the cell surface and used to specifically tag the external side of the bacterial envelop in both diderm and monoderm bacteria. Our work opens new avenues to study the organization and dynamics of the bacterial cell surface proteins.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 41
Author(s):  
Gabriel Siracusano ◽  
Maria Tagliamonte ◽  
Luigi Buonaguro ◽  
Lucia Lopalco

Cell surface proteins act as the go-between in carrying the information from the extracellular environment to the intracellular signaling proteins. However, these proteins are often deregulated in neoplastic diseases, including hepatocellular carcinoma. This review discusses several recent studies that have investigated the role of cell surface proteins in the occurrence and progression of HCC, highlighting the possibility to use them as biomarkers of the disease and/or targets for vaccines and therapeutics.


Author(s):  
Watt W. Webb

Plasma membrane heterogeneity is implicit in the existence of specialized cell surface organelles which are necessary for cellular function; coated pits, post and pre-synaptic terminals, microvillae, caveolae, tight junctions, focal contacts and endothelial polarization are examples. The persistence of these discrete molecular aggregates depends on localized restraint of the constituent molecules within specific domaines in the cell surface by strong intermolecular bonds and/or anchorage to extended cytoskeleton. The observed plasticity of many of organelles and the dynamical modulation of domaines induced by cellular signaling evidence evanescent intermolecular interactions even in conspicuous aggregates. There is also strong evidence that universal restraints on the mobility of cell surface proteins persist virtually everywhere in cell surfaces, not only in the discrete organelles. Diffusion of cell surface proteins is slowed by several orders of magnitude relative to corresponding protein diffusion coefficients in isolated lipid membranes as has been determined by various ensemble average methods of measurement such as fluorescence photobleaching recovery(FPR).


Sign in / Sign up

Export Citation Format

Share Document