Teaching Collocations In Romanian Medical Language For Preparatory Year Students

Author(s):  
Ileana Silvia Ciornei
1991 ◽  
Vol 30 (04) ◽  
pp. 275-283 ◽  
Author(s):  
P. M. Pietrzyk

Abstract:Much information about patients is stored in free text. Hence, the computerized processing of medical language data has been a well-known goal of medical informatics resulting in different paradigms. In Gottingen, a Medical Text Analysis System for German (abbr. MediTAS) has been under development for some time, trying to combine and to extend these paradigms. This article concentrates on the automated syntax analysis of German medical utterances. The investigated text material consists of 8,790 distinct utterances extracted from the summary sections of about 18,400 cytopathological findings reports. The parsing is based upon a new approach called Left-Associative Grammar (LAG) developed by Hausser. By extending considerably the LAG approach, most of the grammatical constructions occurring in the text material could be covered.


1980 ◽  
Vol 19 (04) ◽  
pp. 187-194
Author(s):  
J.-Ph. Berney ◽  
R. Baud ◽  
J.-R. Scherrer

It is well known that Frame Selection Systems (FFS) have proved both popular and effective in physician-machine and patient-machine dialogue. A formal algorithm for definition of a Frame Selection System for handling man-machine dialogue is presented here. Besides, it is shown how the natural medical language can be handled using the approach of a tree branching logic. This logic appears to be based upon ordered series of selections which enclose a syntactic structure. The external specifications are discussed with regard to convenience and efficiency. Knowing that all communication between the user and the application programmes is handled only by FSS software, FSS contributes to achieving modularity and, therefore, also maintainability in a transaction-oriented system with a large data base and concurrent accesses.


2021 ◽  
Vol 21 (S2) ◽  
Author(s):  
Feihong Yang ◽  
Xuwen Wang ◽  
Hetong Ma ◽  
Jiao Li

Abstract Background Transformer is an attention-based architecture proven the state-of-the-art model in natural language processing (NLP). To reduce the difficulty of beginning to use transformer-based models in medical language understanding and expand the capability of the scikit-learn toolkit in deep learning, we proposed an easy to learn Python toolkit named transformers-sklearn. By wrapping the interfaces of transformers in only three functions (i.e., fit, score, and predict), transformers-sklearn combines the advantages of the transformers and scikit-learn toolkits. Methods In transformers-sklearn, three Python classes were implemented, namely, BERTologyClassifier for the classification task, BERTologyNERClassifier for the named entity recognition (NER) task, and BERTologyRegressor for the regression task. Each class contains three methods, i.e., fit for fine-tuning transformer-based models with the training dataset, score for evaluating the performance of the fine-tuned model, and predict for predicting the labels of the test dataset. transformers-sklearn is a user-friendly toolkit that (1) Is customizable via a few parameters (e.g., model_name_or_path and model_type), (2) Supports multilingual NLP tasks, and (3) Requires less coding. The input data format is automatically generated by transformers-sklearn with the annotated corpus. Newcomers only need to prepare the dataset. The model framework and training methods are predefined in transformers-sklearn. Results We collected four open-source medical language datasets, including TrialClassification for Chinese medical trial text multi label classification, BC5CDR for English biomedical text name entity recognition, DiabetesNER for Chinese diabetes entity recognition and BIOSSES for English biomedical sentence similarity estimation. In the four medical NLP tasks, the average code size of our script is 45 lines/task, which is one-sixth the size of transformers’ script. The experimental results show that transformers-sklearn based on pretrained BERT models achieved macro F1 scores of 0.8225, 0.8703 and 0.6908, respectively, on the TrialClassification, BC5CDR and DiabetesNER tasks and a Pearson correlation of 0.8260 on the BIOSSES task, which is consistent with the results of transformers. Conclusions The proposed toolkit could help newcomers address medical language understanding tasks using the scikit-learn coding style easily. The code and tutorials of transformers-sklearn are available at https://doi.org/10.5281/zenodo.4453803. In future, more medical language understanding tasks will be supported to improve the applications of transformers_sklearn.


Author(s):  
Qian Zhu ◽  
Dac-Trung Nguyen ◽  
Eric Sid ◽  
Anne Pariser

Abstract Objective In this study, we aimed to evaluate the capability of the Unified Medical Language System (UMLS) as one data standard to support data normalization and harmonization of datasets that have been developed for rare diseases. Through analysis of data mappings between multiple rare disease resources and the UMLS, we propose suggested extensions of the UMLS that will enable its adoption as a global standard in rare disease. Methods We analyzed data mappings between the UMLS and existing datasets on over 7,000 rare diseases that were retrieved from four publicly accessible resources: Genetic And Rare Diseases Information Center (GARD), Orphanet, Online Mendelian Inheritance in Men (OMIM), and the Monarch Disease Ontology (MONDO). Two types of disease mappings were assessed, (1) curated mappings extracted from those four resources; and (2) established mappings generated by querying the rare disease-based integrative knowledge graph developed in the previous study. Results We found that 100% of OMIM concepts, and over 50% of concepts from GARD, MONDO, and Orphanet were normalized by the UMLS and accurately categorized into the appropriate UMLS semantic groups. We analyzed 58,636 UMLS mappings, which resulted in 3,876 UMLS concepts across these resources. Manual evaluation of a random set of 500 UMLS mappings demonstrated a high level of accuracy (99%) of developing those mappings, which consisted of 414 mappings of synonyms (82.8%), 76 are subtypes (15.2%), and five are siblings (1%). Conclusion The mapping results illustrated in this study that the UMLS was able to accurately represent rare disease concepts, and their associated information, such as genes and phenotypes, and can effectively be used to support data harmonization across existing resources developed on collecting rare disease data. We recommend the adoption of the UMLS as a data standard for rare disease to enable the existing rare disease datasets to support future applications in a clinical and community settings.


Sign in / Sign up

Export Citation Format

Share Document