scholarly journals Assessment of water quality bounamoussa river in el tarf region using water quality index (Algeria)

2020 ◽  
Vol 4 (6) ◽  
pp. 299-302
Author(s):  
Lilia Zaoui

Water quality is an important standard in matching water require and contribute. Abundant degree of freshwater is prominent for biological requirements and is a vital surface of incorporated environmental managing and sustainable development. The quality of water indices evaluation enterprise particular value which reduce the immense quantity of parameters and simply characterize data. The aim objective of the present study is to assess the suitability of surface water of Bounamoussa River situated in El-Tarf city located in the Algerian's extreme northeast, for drinking purpose based on calculated water quality index standards. Per methodology, WQI is a significant parameter to check the quality of water, and its calculation was carried out by using relations given in the water quality index computation which twelve selected parameters (pH, EC,TH, Ca, Mg, Na, K, Cl, NH4, SO4, NO2, NO3) have been considered, which were measured at nine stations along the river during two sampling campaigns (winter and summer seasons). The results showed that the computed WQI values of Bounamoussa River surface water extend from 32,80 to 65,77 with an average 46,76 in winter and fluctuate from 35,86 to 97,46 with an average of 47,25 in summer, in general, the study region in both seasons is under excellent to good category. Water from almost all the sampled sites can be careful as suitable for drinking purposes. It’s recommended to continue monitoring the water of this ecosystem to facilitate the establishment at all levels to supervise and defend the natural resources of the region.

2017 ◽  
Vol 4 (4) ◽  
pp. 475-482 ◽  
Author(s):  
H. R. Bharathi ◽  
S. Manjappa ◽  
T. Suresh ◽  
B. Suresh

Present communication deals with a study of Physico-chemical parameters such as pH, Temperature, Total Suspended Solids, Turbidity, Dissolved Oxygen, Biochemical Oxygen Demand, Nitrate and Phosphate in water samples of Channarayapatna, Janivara, Anekere and Baghur water bodies in Channarayapatna taluka, Karnataka state of India. The water quality of the samples was compared with standard values given by World Health Organization (WHO) and United State Salinity Laboratory for drinking and irrigation purposes. Water Quality Index (WQI) was also calculated to know the overall quality of water samples. Water quality index (WQI) of Surface water body of various Sampling locations of Channarayapatna taluka, Karnataka ranged between 61.82 and 68.27 indicates the fair quality of water. The water quality index is calculated by indicator (100-point scale) shows that water is suitable for drinking purposes only after pretreatment like filtering, boiling, reverse osmosis and electro dialysis. WQI can play a big role in justifying the water pollution problems after encountered in different surface water bodies. Application of Water Quality Index (WQI) in this study has been found useful in assessing the overall quality of water and to get rid of judgment on quality of the surface water.Int J Appl Sci Biotechnol, Vol 4(4): 475-482


2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Samuel Anim Ofosu ◽  
Kwaku A. Adjei ◽  
Samuel Nii Odai

AbstractThe natural resources, especially water in the Densu river basin, play significant roles in the socio-economic development of Ghana. The purpose of this study was to analyse the water quality of the Densu river using water quality index (WQI) and multivariate techniques. In this study, physico-chemical and bacteriological parameters were measured from surface water samples taken from eight (8) sampling stations in the study area. water quality index and multivariate techniques such as hierarchical cluster analysis and principal component analysis were utilized in the analysis of surface water quality data. The results indicated that the average WQI of the Densu river for the two sampling periods was sixty-one (61) which is classified as Medium, based on the Solway WQI index. The pH levels of all the samples were within allowable limits of World Health Organization (WHO) guidelines. All the sampling stations for the two seasonal periods had bacteriological parameters higher than WHO guidelines, making the samples unsuitable for most domestic uses. The study revealed that six (6) principal components accounted for about 97% of the total variance of dataset and three (3) spatial clusters were classified. This research has provided the basis for applying both WQI and multivariate techniques in analysing and classifying water quality in a river basin.


2021 ◽  
Vol 17 (5) ◽  
pp. 593-608
Author(s):  
Theingi Khaung ◽  
Chuleemas Boonthai Iwai ◽  
Thammared Chuasavathi ◽  
Thammared Chuasavathi

Inle Lake is the second largest inland lake in Myanmar. Floating gardens, mostly for tomato cultivation, are a unique and profitable method of agriculture used by people living on and around the lake. This study investigated the water quality of Inle Lake and how it has been affected by the different agricultural practices used in tomato cultivation on floating garden beds, by measuring pollution levels. Water samples were collected from the sites representing two types of agricultural practice from four villages. The first was designated as being grown under good agricultural practices (GAP), and the other as under non-good agricultural practices (non-GAP), with this study undertaken during wet season, 2019 and dry season, 2020. Two additional sets of water samples were collected as references. One of these sets was from the center of the lake and the other from an inlet stream to the lake. All water samples were analyzed for physical and chemical properties. The results found that Ca2+, Mg2+ and HCO3- were dominant in the lake surface water. The results showed significant differences in the mean values for some water quality parameters between the GAP and non-GAP of each study sites in both seasons. In particular, nutrient pollution from chemicals such as nitrogen and phosphorus from the non-GAP were significantly higher than those from GAP. Water quality index was calculated to describe the overall quality of lake surface water. It was observed that the water quality was almost threatened in the floating garden areas.  In comparison between two practices, the non-GAP gave the higher water quality index value than the GAP. This investigated that poor management of fertilizers usage has had a negative effect on the water quality of the lake. The differences seen in water quality from the GAP and non-GAP areas, point to ways to successfully manage sources of water pollution in order to better conserve the lake by sustainable agricultural production.


Author(s):  
Nguyen Ngan Ha ◽  
Tran Thi Thu Huong ◽  
Pham The Vinh ◽  
Tran Thi Van

This paper presents the study of integrating the remote sensing technology with in-situ ground observation for assessing the status of water quality in Ca Mau city through the Vietnam Water Quality Index (VN-WQI). The Sentinel-2 image and in-situ surface water samples were collected on 20 February 2020 for this study. The sample results were then specified by samples’ coordination. Besides, Sentinel-2 imaging was processed by radiometric and atmospheric correction, geometric registration, and extracted pixel spectral values from the sample locations. The multiple linear regressions of seven water quality parameters including BOD5, COD, NH4, PO4, TSS, pH, Coliform with surface water’s pixel spectral values from the satellite images were calculated and used to simulate water quality parameters on the satellite image. They were integrated into the VN-WQI to estimate, classify, and evaluate the general surface water quality of the Ca Mau city. The results show that there is a regressive correlation between measured data and image spectral values, and the simulation also well fits with the data with an acceptable error. The surface water quality of Ca Mau city is heavily polluted with almost all water quality parameters recognized at B1 to above B2 level according to the QCVN08-MT:2015/BTNMT. In terms of VN-WQI, the results also illustrate the low quality of surface water and heavy pollution only used for water transportation, not for domestic use. This approach can be a powerful method in spatially monitoring water quality and supporting environment management.


2017 ◽  
Vol 2 (1) ◽  
pp. 18
Author(s):  
Guntar Marolop S ◽  
Sutrisno Sutrisno

The Lake is an ecosystem of wetlands to note preserved. However, since the Lake is an open system that can also be utilized for the certain provisions tailored to support power and capacity of the Lake. One of the supported power and capacity of the Lake is the availability and quality of the water of the Lake. Sipin lakes located in the city of Jambi, have long been exploited by various parties, just that its utilization is not maximal for a variety of activities. To maximize its utility it is necessary to know the power support and power tampungnya. By knowing the power support and power tampungnya then it can be determined the allocation it is used so that will give you maximum results. One of the variables that need to be taken care of in order to use Sipin Lake against correspond to peruntukkannya is about the availability and quality of water. Study on quantity and quality of water of the Lake can be done by way of Sipin analyzed the data using the method of precipitation F.J. Mock. Water quality studies done by using water quality Index method of electronically Stored. F.J. method using Mock data to analyze rainfall from year 2005 until 2015, obtained that debit maximum inlet reach 4,870 m3/sec and the minimum discharge of 2,090 m3/sec.Method Stored i.e. testing kualiats Sipin lake water from year 2014 2016 disimpulkkan s/d that the water quality of Lake Sipin only in accordance with the requirements of the water quality of the IV. From fluctuations in discharge and water quality of the IV, then Lake peruntukaan Sipin can only be utilized to provide water gardening or urban businesses or other businesses that comply with the requirements of the water quality of the IV.Keywords: Lake, water quantity, water quality, allocation, and utilization.


2019 ◽  
Vol 70 (2) ◽  
pp. 398-406
Author(s):  
Romana Drasovean ◽  
Gabriel Murariu ◽  
Gigi Constantinescu ◽  
Adrian Circiumaru

In order to determine the water quality of Danube River, in the Galati area, the Water Quality Index was calculated. Water Quality Index is a useful number of overall qualities of water. Galati is a Danube port city located in south-eastern of Romania. Samples were taken from 9 places along the Danube starting with the place where the Siret flows into the Danube to the Profiland Steel Plant. Profiland Steel is a company in Galai whose main activities are: sheet and zinc strips; treatment and coating of metals. The monitoring period was one year, from November 2016 to December 2017. Every month, thirty physical - chemical parameters were investigated. In this study the assessment of surface water quality was determined on the basis of various indicators such as: potassium and calcium ions, nitrites, nitrates, total nitrogen, ammonium, chlorides, total phosphorus, sulphates, cadmium, chrome, copper, lead, iron, zinc, density, dissolved oxygen, chemical oxygen demand (CCO-Cr), biochemical oxygen demand (CBO5), electrical conductivity, the density of the conductivity, resistivity, pH, salinity, total dissolved solids. The water quality index (WQI) has been calculated by using Weighted Arithmetic Water Quality Index Method. Two types of correlations were developed: Pearson correlation matrix and Spearman correlation.


2017 ◽  
Vol 68 (8) ◽  
pp. 1732-1739 ◽  
Author(s):  
Iuliana Paun ◽  
Florentina Laura Chiriac ◽  
Nicoleta Mirela Marin ◽  
Liliana Valeria Cruceru ◽  
Luoana Florentina Pascu ◽  
...  

The Danube River is the major source of drinking water supply for the cities in the southern part of Romania. The study was a descriptive-analytical one and lasted for 9 month. Samples were taken monthly between March 2016 and November 2016. Six sampling sites were selected to evaluate the spatial and temporal changes of water quality along the river. The samples were analyzed based on the standard methods for the following parameters: pH, conductivity (EC), NH4+, NO3-, Cl -, suspended solids, PO43-, SO42-, metals (Fe, Cd, Cr, Pb, Ni, Hg, As, Zn, Cu, Mn). The obtained values were compared with those imposed by the Romanian environmental legislation. An efficient and simplified method to express the quality of water used for consumption is provided by the Water Quality Index (WQI). WQI reflects the quality of water in a single value by comparing data obtained from the investigation of a number of physico-chemical parameters to the existing limits. The evaluation of water quality was performed using the Water Quality Index of the Canadian Council of Ministries of the Environment (CCME WQI). Water quality indices were classified as: excellent, good, medium, bad and very bad. The results indicated the water quality classification as �good� in all six sampling selected sites.


2020 ◽  
Vol 17 (4) ◽  
pp. 59-72
Author(s):  
Rabiranjan Prusty ◽  
Trinath Biswal

The modelling of water quality is an integrated source of good management, which benefits the environment and its people. In the present study, the quality of water was measured in terms of physicochemical analysis and WQI. This analysis facilitates the eco-management study of the water. In this article, we have measured the quality of the water in Taladanda canal and river Mahanadi nearby Paradip area in terms of WQI for the year 2017. Five different sampling stations were selected from Taladanda canal and nine sampling points were selected from river Mahanadi. It was found that the water quality index in most of the areas was much higher, however, the water is of poor quality. But in PPL site areas, the quality of water was found to be very poor and not suitable for human use. The pollution load was found to be much higher in the Taladanda canal and moderate in Mahanadi River near the Paradip area.


Sign in / Sign up

Export Citation Format

Share Document