scholarly journals Satellite glial cells of the peripheral nervous system

2021 ◽  
Vol 5 (2) ◽  
pp. 38-41
Author(s):  
David John Mackay Smith
2020 ◽  
Author(s):  
A. Milosavljević ◽  
J. Jančić ◽  
A. Mirčić ◽  
A. Dožić ◽  
J. Boljanović ◽  
...  

Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3735-3743 ◽  
Author(s):  
V. Van De Bor ◽  
R. Walther ◽  
A. Giangrande

In flies, the choice between neuronal and glial fates depends on the asymmetric division of multipotent precursors, the neuroglioblast of the central nervous system and the IIb precursor of the sensory organ lineage. In the central nervous system, the choice between the two fates requires asymmetric distribution of the glial cell deficient/glial cell missing (glide/gcm) RNA in the neuroglioblast. Preferential accumulation of the transcript in one of the daughter cells results in the activation of the glial fate in that cell, which becomes a glial precursor. Here we show that glide/gcm is necessary to induce glial differentiation in the peripheral nervous system. We also present evidence that glide/gcm RNA is not necessary to induce the fate choice in the peripheral multipotent precursor. Indeed, glide/gcm RNA and protein are first detected in one daughter of IIb but not in IIb itself. Thus, glide/gcm is required in both central and peripheral glial cells, but its regulation is context dependent. Strikingly, we have found that only subsets of sensory organs are gliogenic and express glide/gcm. The ability to produce glial cells depends on fixed, lineage related, cues and not on stochastic decisions. Finally, we show that after glide/gcm expression has ceased, the IIb daughter migrates and divides symmetrically to produce several mature glial cells. Thus, the glide/gcm-expressing cell, also called the fifth cell of the sensory organ, is indeed a glial precursor. This is the first reported case of symmetric division in the sensory organ lineage. These data indicate that the organization of the fly peripheral nervous system is more complex than previously thought.


Glia ◽  
2006 ◽  
Vol 53 (7) ◽  
pp. 783-787 ◽  
Author(s):  
Hongwen Gao ◽  
Chengyan He ◽  
Xuedong Fang ◽  
Xia Hou ◽  
Xuechao Feng ◽  
...  

Development ◽  
1996 ◽  
Vol 122 (1) ◽  
pp. 131-139 ◽  
Author(s):  
S. Vincent ◽  
J.L. Vonesch ◽  
A. Giangrande

Glial cells constitute the second component of the nervous system and are important during neuronal development. In this paper we describe a gene, glial cell deficient, (glide), that is necessary for glial cell fate commitment in Drosophila melanogaster. Mutations at the glide locus prevent glial cell determination in the embryonic central and peripheral nervous system. Moreover, we show that the absence of glial cells is the consequence of a cell fate switch from glia to neurones. This suggests the existence of a multipotent precursor cells in the nervous system. glide mutants also display defects in axonal navigation, which confirms and extends previous results indicating a role for glial cells in these processes.


Development ◽  
2013 ◽  
Vol 140 (17) ◽  
pp. 3657-3668 ◽  
Author(s):  
C. M. von Hilchen ◽  
A. E. Bustos ◽  
A. Giangrande ◽  
G. M. Technau ◽  
B. Altenhein

1992 ◽  
Vol 116 (6) ◽  
pp. 1455-1464 ◽  
Author(s):  
R Curtis ◽  
H J Stewart ◽  
S M Hall ◽  
G P Wilkin ◽  
R Mirsky ◽  
...  

Recently it has been demonstrated that the growth-associated protein GAP-43 is not confined to neurons but is also expressed by certain central nervous system glial cells in tissue culture and in vivo. This study has extended these observations to the major class of glial cells in the peripheral nervous system, Schwann cells. Using immunohistochemical techniques, we show that GAP-43 immunoreactivity is present in Schwann cell precursors and in mature non-myelin-forming Schwann cells both in vitro and in vivo. This immunoreactivity is shown by Western blotting to be a membrane-associated protein that comigrates with purified central nervous system GAP-43. Furthermore, metabolic labeling experiments demonstrate definitively that Schwann cells in culture can synthesize GAP-43. Mature myelin-forming Schwann cells do not express GAP-43 but when Schwann cells are removed from axonal contact in vivo by nerve transection GAP-43 expression is upregulated in nearly all Schwann cells of the distal stump by 4 wk after denervation. In contrast, in cultured Schwann cells GAP-43 is not rapidly upregulated in cells that have been making myelin in vivo. Thus the regulation of GAP-43 appears to be complex and different from that of other proteins associated with nonmyelin-forming Schwann cells such as N-CAM, glial fibrillary acidic protein, A5E3, and nerve growth factor receptor, which are rapidly upregulated in myelin-forming cells after loss of axonal contact. These observations suggest that GAP-43 may play a more general role in the nervous system than previously supposed.


Sign in / Sign up

Export Citation Format

Share Document