scholarly journals The Problem of Constructing the GMDH Neural Networks with Active Neurons

2021 ◽  
pp. 45-54
Author(s):  
Olha G. Moroz ◽  

Characteristics of the existing neural networks of GMDH with active neurons are given and their main advantages and disadvantages are analyzed. An approach to increasing the efficiency of inductive construction of complex system models from statistical data based on the creation of a new class of GMDH neural networks with active neurons using methods of computational intelligence is proposed.

10.1068/b1296 ◽  
2004 ◽  
Vol 31 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Thomas Hatzichristos

This paper presents a methodology for the creation of homogeneous demographic regions with geographical information systems (GIS) and computational intelligence. The proposed method is unsupervised fuzzy classification performed by neural networks using the fuzzy Kohonen algorithm. GIS technology offers a powerful set of tools for the input, management, and output of data, whereas computational intelligence is used for the analysis and the classification of the data. The proposed methodology is applied to the municipality of Athens, in Greece. Finally the advantages and disadvantages of the approach are discussed.


Author(s):  
V.A. Sobolevsky

Goal: the need for systems of automated generation of models of complexly formalized objects is considered. The approach to the creation of such a system based on deep learning is described. Materials and methods: the article describes the architecture of the application of automated learning, based on deep learning, in particular on the basis of the genetic algorithm. Results: the testing of the presented system was carried out on the example of solving the problem of predicting the parameters of ice drift on the Northern Dvina River. Conclusion: the advantages and disadvantages, features of implementation, the scope of the presented system are shown.


Author(s):  
Oleg Belas ◽  
Andrii Belas

The article considers the problem of forecasting nonlinear nonstationary processes, presented in the form of time series, which can describe the dynamics of processes in both technical and economic systems. The general technique of analysis of such data and construction of corresponding mathematical models based on autoregressive models and recurrent neural networks is described in detail. The technique is applied on practical examples while performing the comparative analysis of models of forecasting of quantity of channels of service of cellular subscribers for a given station and revealing advantages and disadvantages of each method. The need to improve the existing methodology and develop a new approach is formulated.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


2006 ◽  
Vol 16 (09) ◽  
pp. 2729-2736 ◽  
Author(s):  
XIAO-SONG YANG ◽  
YAN HUANG

This paper presents a new class of chaotic and hyperchaotic low dimensional cellular neural networks modeled by ordinary differential equations with some simple connection matrices. The chaoticity of these neural networks is indicated by positive Lyapunov exponents calculated by a computer.


2013 ◽  
Vol 11 (1) ◽  
pp. 2 ◽  
Author(s):  
Steve Sussman ◽  
David Levy ◽  
Kristen Hassmiller Lich ◽  
Crystal W Cené ◽  
Mimi M Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document