Degradation of polymeric materials for covering spacecraft solar arrays under exposure to atomic oxygen flows

2005 ◽  
Vol 11 (5-6) ◽  
pp. 78-86 ◽  
Author(s):  
V.A. Shuvalov ◽  
◽  
V.G. Tikhii ◽  
A.I. Priymak ◽  
I.A. Gusarova ◽  
...  
Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1013 ◽  
Author(s):  
Bohan Wu ◽  
Yan Zhang ◽  
Dayong Yang ◽  
Yanbin Yang ◽  
Qiang Yu ◽  
...  

Protection of polymeric materials from the atomic oxygen erosion in low-earth orbit spacecrafts has become one of the most important research topics in aerospace science. In the current research, a series of novel organic/inorganic nanocomposite films with excellent atomic oxygen (AO) resistance are prepared from the phosphorous-containing polyimide (FPI) matrix and trisilanolphenyl polyhedral oligomeric silsesquioxane (TSP–POSS) additive. The PI matrix derived from 2,2’-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 2,5-bis[(4-amino- phenoxy)phenyl]diphenylphosphine oxide (BADPO) itself possesses the self-healing feature in AO environment. Incorporation of TSP–POSS further enhances the AO resistance of the FPI/TSP composite films via a Si–P synergic effect. Meanwhile, the thermal stability of the pristine film is maintained. The FPI-25 composite film with a 25 wt % loading of TSP–POSS in the FPI matrix exhibits an AO erosion yield of 3.1 × 10−26 cm3/atom after an AO attack of 4.0 × 1020 atoms/cm2, which is only 5.8% and 1.0% that of pristine FPI-0 film (6FDA-BADPO) and PI-ref (PMDA-ODA) film derived from 1,2,4,5-pyromellitic anhydride (PMDA) and 4,4’-oxydianline (ODA), respectively. Inert phosphorous and silicon-containing passivation layers are observed at the surface of films during AO exposure.


1985 ◽  
Vol 54 ◽  
Author(s):  
Sharon K. Rutledge

ABSTRACTSignificant polymer weight loss has been observed due to environmental ashing by atomic oxygen at low earth orbital (LEO) altitudes. Static charging during deployment and charging caused by the space plasma in LEO polar orbits may cause electromagnetic interference (EMI) problems on insulating polymer materials that are integral to such applications as high voltage solar arrays. Simultaneous ion beam sputter deposited coatings of indium-tin-oxide (ITO) with polytetrafluoroethylene (PTFE), carbon, air, or methane were investigated as potential solutions to these problems. The purpose of this research was to improve the flexibility of ITO coatings with these additives and to study the effect the addition of these materials had not only on the flexibility of ITO sputter deposited thin films but also on the conductivity and optical properties.


1992 ◽  
Vol 278 ◽  
Author(s):  
Bruce A. Banks ◽  
Bruce M. Auer ◽  
Sharon K. Rutledge ◽  
Linda Gebauer ◽  
Edward A. Sechkar

AbstractAtomic oxygen in low Earth orbit (LEO) readily attacks and oxidizes exposed spacecraft polymeric materials such as polyimide Kapton photovoltaic array blankets. The application of thin film silicon dioxide protective coatings can greatly extend the useful life of such materials in LEO. A Monte Carlo computational model has been developed which simulates atomic oxygen interaction with polymeric and protective coating materials for both ground laboratory and in-space experiments, allowing the determination of the geometrical shape of atomic oxygen attack of protected polymeric materials at defect sites in protective coatings. Modeling of attack of unprotected carbon-carbon composite materials predicts textured surfaces suitable for high emittance radiators. Results for fiberglass composites indicate loss of the matrix polymer leading to friable fibers. The computational modeling to project in-space performance based on ground laboratory testing predicts mass loss per fluence in space to be approximately one third that observed in plasma ashers.


2007 ◽  
Vol 45 (4) ◽  
pp. 294-304 ◽  
Author(s):  
V. A. Shuvalov ◽  
G. S. Kochubei ◽  
A. I. Priimak ◽  
N. I. Pis’mennyi ◽  
N. A. Tokmak
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document