scholarly journals MATCHING OF COMPATIBLE WORK OF SHORT HIGH-VOLTAGE PULSES OF TENSION GENERATOR AND WATER TREATMENT CHAMBER BY DINT OF PULSE BARRIER DISCHARGE

Author(s):  
V.O. Bereka ◽  
◽  
I.P. Kondratenko ◽  

A technique for calculating the parameters of a magnetic switch as an element of a generator of short high-voltage pulses of tension to coordinate its compatible work with a water treatment chamber by dint of pulse barrier discharge is shown. The expediency and efficiency of using such a switch as an element that, by shunting, the discharge chamber, discharges the barrier to the arrival of the next voltage pulse has been confirmed. It is proved that with the accepted geometrical dimensions of the discharge chamber and the amplitude of the pulse voltage, provided that the magnetic switch is present that it is possible to increase the practical use of electricity by ~ 40% due to that which was accumulated in the dielectric barrier in one discharge. Ref.10, fig. 5.

Author(s):  
T. Miura ◽  
T. Sato ◽  
K. Arima ◽  
S. Mukaigawa ◽  
K. Takaki ◽  
...  

AbstractAn ozone production using pulse voltage driven dielectric barrier discharge (DBD) reactor was investigated experimentally to clarify an influence of a duty factor of applied pulse voltage on ozone yield. A square of 10 kV applied voltage was generated using a pulse modulator. Insulated gate bipolar transistor (IGBT) switches were employed to generate the square pulse with 1 kHz in pulse repetition rate. Duty factor of the pulse voltage was controlled in range from 10 to 80% by timing of a gate signal to the IGBT switches. The output voltages of the power supply were applied to a multipoint electrode type DBD reactor in order to operate at low applied voltage. The ozone yield was obtained to be around 100 g/kWh at several thousands ppm ozone production in pure oxygen circumstance at 5 L/min. gas flow. The ozone yield decreased with increasing ozone concentration and was almost independent of the duty factor of square applied voltage under the present experimental condition. Power loss consumed in the pulse modulator was successfully reduced by decreasing duty factor of the output voltage without decrease of the ozone production.


Sign in / Sign up

Export Citation Format

Share Document