Recombinant Forms of Arginase and Arginine Deiminase as Catalytic Components of «Argitest» Enzymatic Kit for L-arginine Analysis

2017 ◽  
Vol 13 (4) ◽  
pp. 56-63 ◽  
Author(s):  
N.Ye. Stasiuk ◽  
◽  
G.Z. Gaida ◽  
A.Ye. Zakalskiy ◽  
O.M. Zakalska ◽  
...  
Keyword(s):  
2020 ◽  
Vol 14 (3) ◽  
pp. 235-246
Author(s):  
Sara Abdollahi ◽  
Mohammad H. Morowvat ◽  
Amir Savardashtaki ◽  
Cambyz Irajie ◽  
Sohrab Najafipour ◽  
...  

Background: Arginine deiminase is a bacterial enzyme, which degrades L-arginine. Some human cancers such as hepatocellular carcinoma (HCC) and melanoma are auxotrophic for arginine. Therefore, PEGylated arginine deiminase (ADI-PEG20) is a good anticancer candidate with antitumor effects. It causes local depletion of L-arginine and growth inhibition in arginineauxotrophic tumor cells. The FDA and EMA have granted orphan status to this drug. Some recently published patents have dealt with this enzyme or its PEGylated form. Objective: Due to increasing attention to it, we aimed to evaluate and compare 30 arginine deiminase proteins from different bacterial species through in silico analysis. Methods: The exploited analyses included the investigation of physicochemical properties, multiple sequence alignment (MSA), motif, superfamily, phylogenetic and 3D comparative analyses of arginine deiminase proteins thorough various bioinformatics tools. Results: The most abundant amino acid in the arginine deiminase proteins is leucine (10.13%) while the least amino acid ratio is cysteine (0.98%). Multiple sequence alignment showed 47 conserved patterns between 30 arginine deiminase amino acid sequences. The results of sequence homology among 30 different groups of arginine deiminase enzymes revealed that all the studied sequences located in amidinotransferase superfamily. Based on the phylogenetic analysis, two major clusters were identified. Considering the results of various in silico studies; we selected the five best candidates for further investigations. The 3D structures of the best five arginine deiminase proteins were generated by the I-TASSER server and PyMOL. The RAMPAGE analysis revealed that 81.4%-91.4%, of the selected sequences, were located in the favored region of arginine deiminase proteins. Conclusion: The results of this study shed light on the basic physicochemical properties of thirty major arginine deiminase sequences. The obtained data could be employed for further in vivo and clinical studies and also for developing the related therapeutic enzymes.


2021 ◽  
Vol 10 (1) ◽  
pp. 1943253
Author(s):  
Kwang-Yu Chang ◽  
Nai-Jung Chiang ◽  
Shang-Yin Wu ◽  
Chia-Jui Yen ◽  
Shang-Hung Chen ◽  
...  
Keyword(s):  

2021 ◽  
Vol 92 ◽  
pp. 107487
Author(s):  
Izzuddin Ahmad Nadzirin ◽  
Adam Leow Thean Chor ◽  
Abu Bakar Salleh ◽  
Mohd Basyaruddin Abdul Rahman ◽  
Bimo A. Tejo

Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Mary Frances Nakamya ◽  
Moses B. Ayoola ◽  
Leslie A. Shack ◽  
Mirghani Mohamed ◽  
Edwin Swiatlo ◽  
...  

Polyamines such as putrescine, cadaverine, and spermidine are small cationic molecules that play significant roles in cellular processes, including bacterial stress responses and host–pathogen interactions. Streptococcus pneumoniae is an opportunistic human pathogen, which causes several diseases that account for significant morbidity and mortality worldwide. As it transits through different host niches, S. pneumoniae is exposed to and must adapt to different types of stress in the host microenvironment. We earlier reported that S. pneumoniae TIGR4, which harbors an isogenic deletion of an arginine decarboxylase (ΔspeA), an enzyme that catalyzes the synthesis of agmatine in the polyamine synthesis pathway, has a reduced capsule. Here, we report the impact of arginine decarboxylase deletion on pneumococcal stress responses. Our results show that ΔspeA is more susceptible to oxidative, nitrosative, and acid stress compared to the wild-type strain. Gene expression analysis by qRT-PCR indicates that thiol peroxidase, a scavenger of reactive oxygen species and aguA from the arginine deiminase system, could be important for peroxide stress responses in a polyamine-dependent manner. Our results also show that speA is essential for endogenous hydrogen peroxide and glutathione production in S. pneumoniae. Taken together, our findings demonstrate the critical role of arginine decarboxylase in pneumococcal stress responses that could impact adaptation and survival in the host.


1978 ◽  
Vol 253 (17) ◽  
pp. 6010-6015
Author(s):  
J.L. Weickmann ◽  
M.E. Himmel ◽  
P.G. Squire ◽  
D.E. Fahrney

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 317
Author(s):  
HanGoo Kang ◽  
Jinwon Seo ◽  
Eun-Jeong Yang ◽  
In-Hong Choi

Silver nanoparticles (AgNPs) are widely used in various fields because of their antimicrobial properties. However, many studies have reported that AgNPs can be harmful to both microorganisms and humans. Reactive oxygen species (ROS) are a key factor of cytotoxicity of AgNPs in mammalian cells and an important factor in the immune reaction of neutrophils. The immune reactions of neutrophils include the expulsion of webs of DNA surrounded by histones and granular proteins. These webs of DNA are termed neutrophil extracellular traps (NETs). NETs allow neutrophils to catch and destroy pathogens in extracellular spaces. In this study, we investigated how AgNPs stimulate neutrophils, specifically focusing on NETs. Freshly isolated human neutrophils were treated with 5 or 100 nm AgNPs. The 5 nm AgNPs induced NET formation, but the 100 nm AgNPs did not. Subsequently, we investigated the mechanism of AgNP-induced NETs using known inhibitors related to NET formation. AgNP-induced NETs were dependent on ROS, peptidyl arginine deiminase, and neutrophil elastase. The result in this study indicates that treatment of 5 nm AgNPs induce NET formation through histone citrullination by peptidyl arginine deiminase and histone cleavage by neutrophil elastase.


Sign in / Sign up

Export Citation Format

Share Document