scholarly journals Arginine Decarboxylase Is Essential for Pneumococcal Stress Responses

Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Mary Frances Nakamya ◽  
Moses B. Ayoola ◽  
Leslie A. Shack ◽  
Mirghani Mohamed ◽  
Edwin Swiatlo ◽  
...  

Polyamines such as putrescine, cadaverine, and spermidine are small cationic molecules that play significant roles in cellular processes, including bacterial stress responses and host–pathogen interactions. Streptococcus pneumoniae is an opportunistic human pathogen, which causes several diseases that account for significant morbidity and mortality worldwide. As it transits through different host niches, S. pneumoniae is exposed to and must adapt to different types of stress in the host microenvironment. We earlier reported that S. pneumoniae TIGR4, which harbors an isogenic deletion of an arginine decarboxylase (ΔspeA), an enzyme that catalyzes the synthesis of agmatine in the polyamine synthesis pathway, has a reduced capsule. Here, we report the impact of arginine decarboxylase deletion on pneumococcal stress responses. Our results show that ΔspeA is more susceptible to oxidative, nitrosative, and acid stress compared to the wild-type strain. Gene expression analysis by qRT-PCR indicates that thiol peroxidase, a scavenger of reactive oxygen species and aguA from the arginine deiminase system, could be important for peroxide stress responses in a polyamine-dependent manner. Our results also show that speA is essential for endogenous hydrogen peroxide and glutathione production in S. pneumoniae. Taken together, our findings demonstrate the critical role of arginine decarboxylase in pneumococcal stress responses that could impact adaptation and survival in the host.

2016 ◽  
Vol 311 (6) ◽  
pp. C854-C865 ◽  
Author(s):  
Adam Kassan ◽  
Uyen Pham ◽  
Quynhmy Nguyen ◽  
Melissa E. Reichelt ◽  
Eunbyul Cho ◽  
...  

Autophagy is a dynamic recycling process responsible for the breakdown of misfolded proteins and damaged organelles, providing nutrients and energy for cellular renovation and homeostasis. Loss of autophagy is associated with cardiovascular diseases. Caveolin-3 (Cav-3), a muscle-specific isoform, is a structural protein within caveolae and is critical to stress adaptation in the heart. Whether Cav-3 plays a role in regulating autophagy to modulate cardiac stress responses remains unknown. In the present study, we used HL-1 cells, a cardiac muscle cell line, with stable Cav-3 knockdown (Cav-3 KD) and Cav-3 overexpression (Cav-3 OE) to study the impact of Cav-3 in regulation of autophagy. We show that traditional stimulators of autophagy (i.e., rapamycin and starvation) result in upregulation of the process in Cav-3 OE cells while Cav-3 KD cells have a blunted response. Cav-3 coimmunoprecipitated with beclin-1 and Atg12, showing an interaction of caveolin with autophagy-related proteins. In the heart, autophagy may be a major regulator of protection from ischemic stress. We found that Cav-3 KD cells have a decreased expression of autophagy markers [beclin-1, light chain (LC3-II)] after simulated ischemia and ischemia-reperfusion (I/R) compared with WT, whereas OE cells showed increased expression. Moreover, Cav-3 KD cells showed increased cell death and higher level of apoptotic proteins (cleaved caspase-3 and cytochrome c) with suppressed mitochondrial function in response to simulated ischemia and I/R, whereas Cav-3 OE cells were protected and had preserved mitochondrial function. Taken together, these results indicate that autophagy regulates adaptation to cardiac stress in a Cav-3-dependent manner.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254447
Author(s):  
Marcos Francia ◽  
Martin Stortz ◽  
Camila Vazquez Echegaray ◽  
Camila Oses ◽  
Paula Verneri ◽  
...  

Akt/PKB is a kinase involved in the regulation of a wide variety of cell processes. Its activity is modulated by diverse post-translational modifications (PTMs). Particularly, conjugation of the small ubiquitin-related modifier (SUMO) to this kinase impacts on multiple cellular functions, such as proliferation and splicing. In embryonic stem (ES) cells, this kinase is key for pluripotency maintenance. Among other functions, Akt is known to promote the expression of Nanog, a central pluripotency transcription factor (TF). However, the relevance of this specific PTM of Akt has not been previously analyzed in this context. In this work, we study the effect of Akt1 variants with differential SUMOylation susceptibility on the expression of Nanog. Our results demonstrate that both, the Akt1 capability of being modified by SUMO conjugation and a functional SUMO conjugase activity are required to induce Nanog gene expression. Likewise, we found that the common oncogenic E17K Akt1 mutant affected Nanog expression in ES cells also in a SUMOylatability dependent manner. Interestingly, this outcome takes places in ES cells but not in a non-pluripotent heterologous system, suggesting the presence of a crucial factor for this induction in ES cells. Remarkably, the two major candidate factors to mediate this induction, GSK3-β and Tbx3, are non-essential players of this effect, suggesting a complex mechanism probably involving non-canonical pathways. Furthermore, we found that Akt1 subcellular distribution does not depend on its SUMOylatability, indicating that Akt localization has no influence on the effect on Nanog, and that besides the membrane localization of E17K Akt mutant, SUMOylation is also required for its hyperactivity. Our results highlight the impact of SUMO conjugation in the function of a kinase relevant for a plethora of cellular processes, including the control of a key pluripotency TF.


2012 ◽  
Vol 25 (1) ◽  
pp. 119-128 ◽  
Author(s):  
S. B. Stockwell ◽  
L. Reutimann ◽  
M. L. Guerinot

Alternative sigma (σ) factors, proteins that recruit RNA polymerase core enzyme to target promoters, are one mechanism by which bacteria transcriptionally regulate groups of genes in response to environmental stimuli. A class of σ70 proteins, termed extracytoplasmic function (ECF) σ factors, are involved in cellular processes such as bacterial stress responses and virulence. Here, we describe an ECF16 σ factor, EcfS (Blr4928) from the gram-negative soil bacterium Bradyrhizobium japonicum USDA110, that plays a critical role in the establishment of a functional symbiosis with soybean. Nonpolar insertional mutants of ecfS form immature nodules that do not fix nitrogen, a defect that can be successfully complemented by expression of ecfS. Overexpression of the cocistronic gene, tmrS (blr4929), phenocopies the ecfS mutant in planta and, therefore, we propose that TmrS is a negative regulator of EcfS, a determination consistent with the prediction that it encodes an anti-σ factor. Microarray analysis of the ecfS mutant and tmrS overexpressor was used to identify 40 transcripts misregulated in both strains. These transcripts primarily encode proteins of unknown and transport-related functions and may provide insights into the symbiotic defect in these strains.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Samuel Lundt ◽  
Nannan Zhang ◽  
Xiaowan Wang ◽  
Luis Polo-Parada ◽  
Shinghua Ding

AbstractNicotinamide adenine dinucleotide (NAD+) plays a critical role in energy metabolism and bioenergetic homeostasis. Most NAD+ in mammalian cells is synthesized via the NAD+ salvage pathway, where nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme, converting nicotinamide into nicotinamide mononucleotide (NMN). Using a Thy1-Nampt−/− projection neuron conditional knockout (cKO) mouse, we studied the impact of NAMPT on synaptic vesicle cycling in the neuromuscular junction (NMJ), end-plate structure of NMJs and muscle contractility of semitendinosus muscles. Loss of NAMPT impaired synaptic vesicle endocytosis/exocytosis in the NMJs. The cKO mice also had motor endplates with significantly reduced area and thickness. When the cKO mice were treated with NMN, vesicle endocytosis/exocytosis was improved and endplate morphology was restored. Electrical stimulation induced muscle contraction was significantly impacted in the cKO mice in a frequency dependent manner. The cKO mice were unresponsive to high frequency stimulation (100 Hz), while the NMN-treated cKO mice responded similarly to the control mice. Transmission electron microscopy (TEM) revealed sarcomere misalignment and changes to mitochondrial morphology in the cKO mice, with NMN treatment restoring sarcomere alignment but not mitochondrial morphology. This study demonstrates that neuronal NAMPT is important for pre-/post-synaptic NMJ function, and maintaining skeletal muscular function and structure.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Caroline Kumsta ◽  
Jessica T. Chang ◽  
Reina Lee ◽  
Ee Phie Tan ◽  
Yongzhi Yang ◽  
...  

AbstractAutophagy can degrade cargos with the help of selective autophagy receptors such as p62/SQSTM1, which facilitates the degradation of ubiquitinated cargo. While the process of autophagy has been linked to aging, the impact of selective autophagy in lifespan regulation remains unclear. We have recently shown in Caenorhabditis elegans that transcript levels of sqst-1/p62 increase upon a hormetic heat shock, suggesting a role of SQST-1/p62 in stress response and aging. Here, we find that sqst-1/p62 is required for hormetic benefits of heat shock, including longevity, improved neuronal proteostasis, and autophagy induction. Furthermore, overexpression of SQST-1/p62 is sufficient to induce autophagy in distinct tissues, extend lifespan, and improve the fitness of mutants with defects in proteostasis in an autophagy-dependent manner. Collectively, these findings illustrate that increased expression of a selective autophagy receptor is sufficient to induce autophagy, enhance proteostasis and extend longevity, and demonstrate an important role for sqst-1/p62 in proteotoxic stress responses.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6845
Author(s):  
Miriam Khider ◽  
Hilde Hansen ◽  
Erik Hjerde ◽  
Jostein A. Johansen ◽  
Nils Peder Willassen

BackgroundBacterial communication through quorum sensing (QS) systems has been reported to be important in coordinating several traits such as biofilm formation. InAliivibrio salmonicidatwo QS systems the LuxI/R and AinS/R, have been shown to be responsible for the production of eight acyl-homoserine lactones (AHLs) in a cell density dependent manner. We have previously demonstrated that inactivation of LitR, the master regulator of the QS system resulted in biofilm formation, similar to the biofilm formed by the AHL deficient mutantΔainSluxI−. In this study, we aimed to investigate the global gene expression patterns ofluxIandainSautoinducer synthases mutants using transcriptomic profiling. In addition, we examined the influence of the different AHLs on biofilm formation.ResultsThe transcriptome profiling ofΔainSandluxI−mutants allowed us to identify genes and gene clusters regulated by QS inA. salmonicida. Relative to the wild type, theΔainSandluxI−mutants revealed 29 and 500 differentially expressed genes (DEGs), respectively. The functional analysis demonstrated that the most pronounced DEGs were involved in bacterial motility and chemotaxis, exopolysaccharide production, and surface structures related to adhesion. Inactivation ofluxI, but notainSgenes resulted in wrinkled colony morphology. While inactivation of both genes (ΔainSluxI−) resulted in strains able to form wrinkled colonies and mushroom structured biofilm. Moreover, when theΔainSluxI−mutant was supplemented with N-3-oxo-hexanoyl-L-homoserine lactone (3OC6-HSL) or N-3-hydroxy-decanoyl-L-homoserine lactone (3OHC10-HSL), the biofilm did not develop. We also show that LuxI is needed for motility and for repression of EPS production, where repression of EPS is likely operated through the RpoQ-sigma factor.ConclusionThese findings imply that the LuxI and AinS autoinducer synthases play a critical role in the regulation of biofilm formation, EPS production, and motility.


2020 ◽  
Vol 117 (43) ◽  
pp. 26926-26935
Author(s):  
Daniel W. Heindel ◽  
Sujeethraj Koppolu ◽  
Yue Zhang ◽  
Brian Kasper ◽  
Lawrence Meche ◽  
...  

Influenza virus infections cause a wide variety of outcomes, from mild disease to 3 to 5 million cases of severe illness and ∼290,000 to 645,000 deaths annually worldwide. The molecular mechanisms underlying these disparate outcomes are currently unknown. Glycosylation within the human host plays a critical role in influenza virus biology. However, the impact these modifications have on the severity of influenza disease has not been examined. Herein, we profile the glycomic host responses to influenza virus infection as a function of disease severity using a ferret model and our lectin microarray technology. We identify the glycan epitope high mannose as a marker of influenza virus-induced pathogenesis and severity of disease outcome. Induction of high mannose is dependent upon the unfolded protein response (UPR) pathway, a pathway previously shown to associate with lung damage and severity of influenza virus infection. Also, the mannan-binding lectin (MBL2), an innate immune lectin that negatively impacts influenza outcomes, recognizes influenza virus-infected cells in a high mannose-dependent manner. Together, our data argue that the high mannose motif is an infection-associated molecular pattern on host cells that may guide immune responses leading to the concomitant damage associated with severity.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4377-4377
Author(s):  
Cedric Dos Santos ◽  
Georges Habineza Ndikuyeze ◽  
Michael Nisssan ◽  
Chenghui Zhou ◽  
Xiaochuan Shan ◽  
...  

Abstract FTL3 mutations are found in about 30% of AML patients, conferring a leukemic blast growth advantage, drug therapy resistance in the bone marrow (BM) and poor outcome. Mesenchymal stem/stromal cells (MSCs) are essential components of the bone marrow microenvironment, and growing evidence suggest that MSCs play a critical role in AML chemo-resistance, although the molecular mechanisms involved are poorly understood. The purpose of the study was to (1) establish an novel in vitro co-culture system between primary AML blasts and healthy donor BM-MSCs (HD-MSCs) or AML patient-derived MSCs (AML-MSCs), (2) evaluate the impact of culture with BM-MSCs on the sensitivity of AML cells to AC220 using patients samples with FLT3-ITD (n=4) or FLT3-WT (n=3). We first cultured HD-MSCs (n=5) and AML-MSC (n=3) and observed no phenotypical differences (CD14- CD34- CD45- CD73+ CD90+ CD105+), although HD-MSCs grew faster. We evaluated the effect of co-culturing AML samples (n=6) with HD-MSCs or AML-MSCs for 5 and 12 days on leukemic cell growth and found that both types of MSCs significantly and equally enhanced AML cell proliferation while maintaining blast phenotype. Using clonogenic assays on 4 AML specimens cultured alone or with either HD- or AML-MSCs for 5 and 12 days, we found that co-culture with either source of BM-MSCs drastically increased colony-forming cells number at day 5 and day 12 while CFC number decreased in the absence on BM-MSCs (no colonies at day 12 for the 4 samples), indicating that AML co-culture with HD/AML-MSCs supports the survival and/or proliferation of AML stem/progenitor cells. We next assessed the effect of increasing doses of AC220 (1, 10, 50, 100 and 500nM) on the apoptosis of FLT3-ITD (n=3) and FLT3-WT (n=4) AML cells cultured alone or with HD-MSCs. Exposure to AC220 for 72 hours significantly, and in a dose-dependent manner, increased the apoptosis of AML FLT3-ITD cells in monoculture (n=3, 21±1% of Annexin V positive cells for control, AC220 1nM 29±3.7%, 10nM 31±2.5%, 50nM 32±1.5%, 100nM 34±1.7% and 500nM 38±3.6%). In contrast, AML FLT3-ITD cells co-cultured with HD-MSCs were resistant to the drug (n=3, 21±2.6% of Annexin V positive cells for control, AC220 1nM 23±3%, 10nM 22±3%, 50nM 25±5.7%, 100nM 30±8.3% and 500nM 33±9.5%). Interestingly, we found that AML FLT3-WT are much less sensitive to increasing doses of AC220 compared to ITD samples (n=4, 27±3.9% of Annexin V positive cells for control, AC220 1nM 30±6.5%, 10nM 35±14%, 50nM 37±11%, 100nM 39±13% and 500nM 43±11%), and co-culture with BM-MSCs further decreased the sensitivity of AML FLT3-WT cells to AC220-induced apoptosis (n=4, 19±3.2% of Annexin V positive cells for control, AC220 1nM 17±3.9%, 10nM 20±3.4%, 50nM 19±3.7%, 100nM 21±4.5% and 500nM 26±1%). AC220 treatment for 3 days significantly, and in a dose-dependent manner, inhibited CFCs in AML FLT3-ITD (n=4, with 26±8%, 46±6%, 60±9%, 69±10% and 86±3% inhibition with 1, 10, 50, 100 and 500nM of AC220 respectively) while AML FLT3-ITD co-culture with HD-MSCs were less sensitive (n=4, with 9±10%, 30±6%, 42±9%, 57±11% and 72±7% inhibition with 1, 10, 50, 100 and 500nM of AC220, respectively). Similarly to the AC220-induced apoptosis, we observed that AML FLT3-WT CFCs are less sensitive to AC220-induced growth inhibition compared to ITD samples, although a 3 days exposure to AC220 significantly, and in a dose-dependent manner, inhibited AML FLT3-WT CFCs (n=3, with 38±16%, 44±14%, 58±12%, 70±21% and 81±19% inhibition with 1, 10, 50, 100 and 500nM of AC220, respectively). Interestingly, we observed that co-culture of AML FLT3-WT with stromal cells were significantly more resistant to increasing doses of AC220 (n=3, with 22±7%, 36±5%, 43±8%, 46±8% and 57±6% inhibition with 1, 10, 50, 100 and 500nM of AC220, respectively). Altogether, these results suggest that AML FLT3-ITD cells in monoculture are more sensitive to AC220 treatment compared to AML FLT3-WT primary cells, but more importantly, upon interaction with primary HD-MSCs, both WT and FLT3-ITD primary samples are protected from apoptosis and growth inhibition induced by AC220, indicating a critical role for the BM microenvironment in AC220 resistance. We are currently testing the impact of BM-MSCs co-culture on leukemic stem cell sensitivity to AC220 using transplantation in NSG mice. We will also evaluate if this co-culture model can be predictive of the response to in vivo treatment with AC220 in a patient-derived xenograft model. Disclosures Dos Santos: Janssen R&D: Research Funding. Danet-Desnoyers:Janssen R&D: Research Funding.


2021 ◽  
Vol 15 ◽  
Author(s):  
Claire Mindus ◽  
Jennifer Ellis ◽  
Nienke van Staaveren ◽  
Alexandra Harlander-Matauschek

Lactobacillus species play a critical role in the bidirectional communication between the gut and the brain. Consequently, they have the potential to aid in the treatment of psychological disorders. The impact of Lactobacillus supplementation on the stress responses triggering psychological disorders has not been systematically reviewed. Therefore, the aim of this meta-analysis is to summarize the body of research assessing the effects of Lactobacillus-based probiotics in rodents that underwent an experimental stress treatment or not. The duration of immobility in a Forced Swim Test (FST) was the outcome used to measure changes induced by various treatments. Four online databases were systematically searched for relevant studies published in English. Fourteen studies meeting the criteria were included in the meta-analysis. The effects of probiotic supplementation and stress treatment on the duration of immobility in the FST were analyzed using a generalized linear mixed model. Publication bias was evaluated by funnel plots. Our analysis shows that Lactobacillus-based probiotic supplements significantly reduce immobility in the FST (P < 0.001) in stressed rodents. However, probiotics did not affect the rodents that did not undergo the stress treatment (P = 0.168). These findings provide a better understanding of the potential of Lactobacillus-based probiotics for the management of stress-induced behavior.


2022 ◽  
Vol 23 (1) ◽  
pp. 523
Author(s):  
Sayaka Ueno ◽  
Tamotsu Sudo ◽  
Akira Hirasawa

Ataxia–telangiectasia mutated (ATM) functions as a key initiator and coordinator of DNA damage and cellular stress responses. ATM signaling pathways contain many downstream targets that regulate multiple important cellular processes, including DNA damage repair, apoptosis, cell cycle arrest, oxidative sensing, and proliferation. Over the past few decades, associations between germline ATM pathogenic variants and cancer risk have been reported, particularly for breast and pancreatic cancers. In addition, given that ATM plays a critical role in repairing double-strand breaks, inhibiting other DNA repair pathways could be a synthetic lethal approach. Based on this rationale, several DNA damage response inhibitors are currently being tested in ATM-deficient cancers. In this review, we discuss the current knowledge related to the structure of the ATM gene, function of ATM kinase, clinical significance of ATM germline pathogenic variants in patients with hereditary cancers, and ongoing efforts to target ATM for the benefit of cancer patients.


Sign in / Sign up

Export Citation Format

Share Document