scholarly journals Seeing is believing! Live confocal imaging of microvascular networks in situ: morphology, Ca(2+) signalling and tone

2013 ◽  
Vol 85 (6) ◽  
pp. 129-133
Author(s):  
T. Burdyga ◽  
◽  
L. Borysova ◽  
2020 ◽  
Vol 4 (6) ◽  
pp. 2831-2840 ◽  
Author(s):  
Xiaowei An ◽  
Shasha Li ◽  
Xiaoqiong Hao ◽  
Xiao Du ◽  
Tao Yu ◽  
...  

An in situ morphological transformation phenomenon accompanied by petal-shaped Bi2O2CO3 nanosheets formation has been observed to help improving electrocatalytic performance.


2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Ekaterina Myasnikova ◽  
Svetlana Surkova ◽  
Grigory Stein ◽  
Andrei Pisarev ◽  
Maria Samsonova

Langmuir ◽  
2003 ◽  
Vol 19 (17) ◽  
pp. 6723-6729 ◽  
Author(s):  
Tetsuya Arita ◽  
Yoichi Kanda ◽  
Hidenori Hamabe ◽  
Tomoe Ueno ◽  
Yasuhiko Watanabe ◽  
...  

2013 ◽  
Vol 10 (11) ◽  
pp. 4120-4135 ◽  
Author(s):  
Nilesh P. Ingle ◽  
Lian Xue ◽  
Theresa M. Reineke

2021 ◽  
Author(s):  
Jia-Shuo Yang ◽  
Jayakumar Bose ◽  
Sergey Shabala ◽  
Yong-Ling Ruan

AbstractCotton fibers are single-celled trichomes initiated from ovule epidermis prior to anthesis. Thereafter, the fibers undergo rapid elongation for 20 d before switching to intensive cell wall cellulose synthesis. The final length attained determines fiber yield and quality. As such, cotton fiber represents an excellent single cell model to study regulation of cell growth and differentiation, with significant agronomical implications. One major unresolved question is whether fiber elongation follows a diffusive or a tip growth pattern. We addressed this issue by using cell biology and electrophysiological approaches. Confocal imaging of Ca2+ binding dye, fluo-3 acetoxymethyl (Fluo-3), and in situ microelectrode ion flux measurement revealed that cytosolic Ca2+ was evenly distributed along the elongating fiber cells with Ca2+ and H+ fluxes oscillating from apical to basal regions of the elongating fibers. These findings demonstrate that, contrary to growing pollen tubes or root hairs, cotton fiber growth follows a diffusive, but not the tip growth, pattern. Further analyses showed that the elongating fibers exhibited substantial net H+ efflux, indicating a strong activity of the plasma membrane H+-ATPase required for energy dependent solute uptake. Interestingly, the growing cotton fibers were responding to H2O2 treatment, know to promote fiber elongation, by a massive increase in the net Ca2+ and H+ efflux in both tip and basal zones, while non-growing cells lacked this ability. These observations suggest that desensitization of the cell and a loss of its ability to respond to H2O2 may be causally related to the termination of the cotton fiber elongation.One sentence summaryConfocal imaging of Ca2+ patterning and in situ microelectrode ion flux measurements demonstrate that, contrary to growing pollen tubes or root hairs, cotton fiber growth follows a diffusive, but not the tip growth, pattern.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kristel Parv ◽  
Nestori Westerlund ◽  
Kevin Merchant ◽  
Milad Komijani ◽  
Robin S. Lindsay ◽  
...  

The tissue microenvironment in the mouse pancreas has been shown to promote very different polarizations of resident macrophages with islet-resident macrophages displaying an inflammatory “M1” profile and macrophages in the exocrine tissue mostly displaying an alternatively activated “M2” profile. The impact of this polarization on tissue homeostasis and diabetes development is unclear. In this study, the ability of pancreas-resident macrophages to phagocyte bacterial and endogenous debris was investigated. Mouse endocrine and exocrine tissues were separated, and tissue-resident macrophages were isolated by magnetic immunolabeling. Isolated macrophages were subjected to flow cytometry for polarization markers and qPCR for phagocytosis-related genes. Functional in vitro investigations included phagocytosis and efferocytosis assays using pH-sensitive fluorescent bacterial particles and dead fluorescent neutrophils, respectively. Intravital confocal imaging of in situ phagocytosis and efferocytosis in the pancreas was used to confirm findings in vivo. Gene expression analysis revealed no significant overall difference in expression of most phagocytosis-related genes in islet-resident vs. exocrine-resident macrophages included in the analysis. In this study, pancreas-resident macrophages were shown to differ in their ability to phagocyte bacterial and endogenous debris depending on their microenvironment. This difference in abilities may be one of the factors polarizing islet-resident macrophages to an inflammatory state since phagocytosis has been found to imprint macrophage heterogeneity. It remains unclear if this difference has any implications in the development of islet dysfunction or autoimmunity.


1997 ◽  
Vol 272 (6) ◽  
pp. C1980-C1987 ◽  
Author(s):  
H. Ohata ◽  
Y. Ujike ◽  
K. Momose

The mechanisms for mobilization of intracellular free Ca2+ have been studied in various types of isolated and cultured cells, but little is known about Ca2+ mobilization in individual cells in situ. We tried to establish imaging analysis of intracellular free Ca2+ concentration ([Ca2+]i) in individual cells loaded with the acetoxymethyl ester of fluo 3 in situ, using laser scanning confocal microscopy. The method permitted us to distinguish signals from endothelial and smooth muscle cells of guinea pig artery. Addition of ATP to the artery caused a transient increase in endothelial [Ca2+]i. It was concluded that the response was induced via P2Y purinoceptors, because adenosine 5'-O-(2-thiodiphosphate), but not UTP, caused a similar response independent of extracellular Ca2+. The percentage of cells that responded to ATP (1-10 microM) and the peak amplitude of the transient increase in [Ca2+]i were dose dependently increased. Using rapid xy-scanning and line-scanning modes, we confirmed that 10 microM ATP induced Ca2+ waves, at a rate of 10-30 microns/s, after a lag time of approximately 3 s. These results show that [Ca2+]i waves within endothelial cells are physiologically induced by ATP via P2Y purinoceptor, but not P2U purinoceptor, in aortic strips in situ. The method should be of use in the study of vascular physiology and pathophysiology.


Author(s):  
J. V. Jester ◽  
H. D. Cavanagh ◽  
M. A. Lemp

New developments in optical microscopy involving confocal imaging are now becoming available which dramatically increase resolution, contrast and depth of focus by optically sectioning through structures. The transparency of the anterior ocular structures, cornea and lens, make microscopic visualization and optical sectioning of the living intact eye an interesting possibility. Of the confocal microscopes available, the Tandem Scanning Reflected Light Microscope (referred to here as the Tandem Scanning Confocal Microscope), developed by Professors Petran and Hadravsky at Charles University in Pilzen, Czechoslovakia, permits real-time image acquisition and analysis facilitating in vivo studies of ocular structures.Currently, TSCM imaging is most successful for the cornea. The corneal epithelium, stroma, and endothelium have been studied in vivo and photographed in situ. Confocal scanning images of the superficial epithelium, similar to those obtained by scanning electron microscopy, show both light and dark surface epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document