scholarly journals External-Electric-Field-Enhanced Uniformity and Deposition Rate of a TiO2 Film Prepared by the Sparking Process

2018 ◽  
Vol 63 (6) ◽  
pp. 531 ◽  
Author(s):  
W. Thongpan ◽  
T. Kumpika ◽  
E. Kantarak ◽  
A. Panthawan ◽  
P. Pooseekheaw ◽  
...  

We have used an external electric field to increase both the uniformity and deposition rate of TiO2 films. The experiment is carried out by sparking-off titanium wires with a high dc voltage of 1 kV (field Eint = 10 kV/cm) and a limited current of 3 mA. The external electric fields (Eext) of 3, 6, and 9 kV/cm were applied to the sparking system for 1–5 hours. The as-deposited film morphology was characterized by scanning electron microscopy. The results clearly show that the films are only deposited on the external electric field area. Furthermore, the deposition rate of the films increased from 40.7% to 77.8% in the presence of the external electric field of 9 kV/cm. The effects of an external electric field on both the deposition rate and uniformity of films are investigated and described.

2020 ◽  
Author(s):  
Paolo Raiteri ◽  
Peter Kraus ◽  
Julian Gale

Molecular dynamics simulations of the liquid-liquid interface between water and 1,2-Dichloroethane in the presence of weak external electric fields.<div>The effect of the use of 3D periodic Ewald summation and the effect of the simulation setup are discussed.</div><div>A new simple geometric method for designing the simulation cell is proposed. This method was thoroughly tested shown that it mitigates any artefacts to the use of 3D Ewald summation with external electric field.</div>


2020 ◽  
Author(s):  
Paolo Raiteri ◽  
Peter Kraus ◽  
Julian Gale

Molecular dynamics simulations of the liquid-liquid interface between water and 1,2-Dichloroethane in the presence of weak external electric fields.<div>The effect of the use of 3D periodic Ewald summation and the effect of the simulation setup are discussed.</div><div>A new simple geometric method for designing the simulation cell is proposed. This method was thoroughly tested shown that it mitigates any artefacts to the use of 3D Ewald summation with external electric field.</div>


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Xi-Guang Wang ◽  
Levan Chotorlishvili ◽  
Vitalii K. Dugaev ◽  
Arthur Ernst ◽  
Igor V. Maznichenko ◽  
...  

Abstract In a spin-driven multiferroic system, the magnetoelectric coupling has the form of effective dynamical Dzyaloshinskii–Moriya (DM) interaction. Experimentally, it is confirmed, for instance, for Cu2OSeO3, that the DM interaction has an essential role in the formation of skyrmions, which are topologically protected magnetic structures. Those skyrmions are very robust and can be manipulated through an electric field. The external electric field couples to the spin-driven ferroelectric polarization and the skyrmionic magnetic texture emerged due to the DM interaction. In this work, we demonstrate the effect of optical tweezing. For a particular configuration of the external electric fields it is possible to trap or release the skyrmions in a highly controlled manner. The functionality of the proposed tweezer is visualized by micromagnetic simulations and model analysis.


2014 ◽  
Vol 525 ◽  
pp. 170-176
Author(s):  
Zhao Xu Liu ◽  
Jun Zhu ◽  
Si Hua Ha

The quantum-confined Stark effect on the optical absorption of intersubband transitions in an asymmetric AlxGa1-xN/In0.3Ga0.7N/GaN quantum wells is investigated by means of the density matrix formulism. The built-in electric field generated by the piezoelectric and spontaneous polarizations competing against to the external electric fields is considered. As the result, the influences of the built-in and external electric fields on the energy potentials and the eigen stares are discussed in detail. When the positive external electric field is applied, the peak values of the absorption coefficients from 3-2, 2-1 and 3-1 transitions are reduced and moved to the lower photon energy levels. With the negative field, the exactly opposite results can be obtained. Moreover, it is indicated that the results of the wavelengths from the 3-2, 2-1 and 3-1 transitions are reduced by the positive external electric field and increased by the negative field.


Author(s):  
Tom Clarys ◽  
Thijs Stuyver ◽  
Frank De Proft ◽  
Paul Geerlings

The extension of the E = E[N, v] functional for exploring chemical reactivity in a conceptual DFT context to include external electric fields is discussed.


2014 ◽  
Vol 92 (4) ◽  
pp. 317-323 ◽  
Author(s):  
Ehsan Zahedi ◽  
Majid Mozaffari ◽  
Fereshteh-Sadat Karimi ◽  
Azita Nouri

Structural and electronic properties of 1,2-bis(5-methyl-[2,2′-bithiophen]-4-yl)cyclopent-1-ene in closed form and open form under various external electric field with strengths, 0, 10 × 10−4, 20 × 10−4, 30 × 10−4, 40 × 10−4, and 50 × 10−4 a.u., were studied using the DFT-B3LYP/6-31G* method. As a positive index, structural parameters, length of the photoisomers, and the electronic spatial extents are almost stable at different external electric fields. The UV-Vis electronic spectrum based on time-dependent density functional theory indicated that the HOMO → LUMO transition in the closed form under different electric field strengths is strongly allowed, whereas is very weak in the open form. Electronic response parameters such as the HOMO−LUMO gap, electric dipole moment, and polarizability showed that electric conductivity of the closed form at different field strengths is greater than in the open form. Results of electronic density of states show that at high external electric field, the conductivity of the open form and closed form will be probably equal and switching behavior cannot be observed. Isomerization of the closed form to the open form at different external electric fields can be considered as exothermic and spontaneous.


2021 ◽  
Vol 67 ◽  
pp. 89-96
Author(s):  
Mahboubeh Kargar ◽  
Amir Lohrasebi

The effects of the application of constant electric fields on the dynamics of a confined water droplet between two different surfaces are investigated, by using a molecular dynamics method. It is found that the water molecules responded to the electric field, which partially depends on the wettability of the different surfaces. The results reveal that the application of external electric fields causes to create extra pressure on the surfaces, which are theoretically justified. The induced pressure could be experienced by multilayer nano-filters, which are used in desalination processes, with the aid of an external electric field, and may reduce the water filters shelf life.


2018 ◽  
Vol 20 (27) ◽  
pp. 18699-18706 ◽  
Author(s):  
Feng-Wei Gao ◽  
Hong-Liang Xu ◽  
Shabbir Muhammad ◽  
Zhong-Min Su

External electric fields were found to induce intra- and intermolecular charge transfer and strengthen the second-order nonlinear optical responses of π-dimers.


RSC Advances ◽  
2016 ◽  
Vol 6 (101) ◽  
pp. 98908-98915 ◽  
Author(s):  
Cuihua Zhao ◽  
Dewei Huang ◽  
Jianhua Chen ◽  
Yuqiong Li ◽  
Zheng Du

The influence of external electric fields on the electronic structure and optical properties of TiO2 was studied using first-principle calculations.


2018 ◽  
Vol 17 (04) ◽  
pp. 1850029 ◽  
Author(s):  
Hua Lin ◽  
Yuzhu Liu ◽  
Wenyi Yin ◽  
Yihui Yan ◽  
Luwei Ma ◽  
...  

Chlorobenzene is one of the Persistent Organic Pollutants (POPs) threatening human health. It is significant to study the degradation mechanism under external electric fields. Based on the density functional theory, the physical and dissociation properties including C–Cl bond length, total energy, dipole moment, frontier orbital energy, energy gap, IR spectrum, UV-vis absorption spectrum and potential energy curve are studied under external electric fields. According to these results, it is found that the C–Cl bond length becomes longer and tends to break with the increase of external electric field and the energy gap decreases with the increase of positive as well as negative external electric field. Moreover, the dissociation barrier in potential energy curve decreases and equilibrium bond length increases with increase of positive external electric field. And when external electric field reaches 0.040 atomic units ([Formula: see text], 1 atomic [Formula: see text], the dissociation barrier disappears which means that degradation of chlorobenzene occurs under strong external electric field due to the breakage of C–Cl bond. These results provide important references for studying the degradation mechanism of chlorobenzene under strong external electric fields.


Sign in / Sign up

Export Citation Format

Share Document