The Silicon Tracking System of the CBM Experiment at FAIR

2019 ◽  
Vol 64 (7) ◽  
pp. 607
Author(s):  
A. Lymanets

The Compressed Baryonic Matter (CBM) experiment at FAIR (Darmstadt, Germany) is designed to study the dense nuclear matter in a fixed target configuration with heavy ion beams up to kinetic energies of 11 AGeV for Au+Au collision. The charged particle tracking with below 2% momentum resolution will be performed by the Silicon Tracking System (STS) located in the aperture of a dipole magnet. The detector will be able to reconstruct secondary decay vertices of rare probes, e.g., multistrange hyperons, with 50 мm spatial resolution in the heavy-ion collision environment with up to 1000 charged particle per inelastic interaction at the 10 MHz collision rate. This task requires a highly granular fast detector with radiation tolerance enough to withstand a particle fluence of up to 1014 neq/cm2 1-MeV equivalent accumulated over several years of operation. The system comprises 8 tracking stations based on double-sided silicon microstrip sensors with 58 мm pitch and strips oriented at 7.5∘ stereo angle. The analog signals are read out via stacked microcables (up to 50 cm long) by the front-end electronics based on the STS-XYTER ASIC with self-triggering architecture. Detector modules with this structure will have a material budget between 0.3% and 1.5% radiation length increasing towards the periphery. First detector modules and ladders built from pre-final components have been operated in the demonstrator experiment mCBM at GSI-SIS18 (FAIR Phase-0) providing a test stand for the performance evaluation and system integration. The results of mSTS detector commissioning and the performance in the beam will be presented.

2021 ◽  
Author(s):  
◽  
Michael Deveaux

CMOS Monolithic Active Pixel Sensors for charged particle tracking (CPS) form are ultra-light and highly granular silicon pixel detectors suited for highly sensitive charged particle tracking. Unlike to most other silicon radiation detectors, they rely on standard CMOS technology. This cost efficient approach allows for building particularly small and thin pixels but also introduced, until recently, substantially constraints on the design of the sensors. The most important among them is the missing compatibility with the use of PMOS transistors and depleted charge collection diodes in the pixel. Traditional CPS were thus first of all suited for vertex detectors of relativistic heavy ion and particle physics experiments, which require highest tracking accuracy in combination with moderate time resolution and radiation tolerance. This work reviews the R&D on understanding and improving the radiation tolerance of traditional CPS with non- and partially depleted active medium as pioneered by the MIMOSA-series developed by the IPHC Strasbourg. It introduces the specific measurement methods used to assess the radiation tolerance of those non-standard pixels. Moreover, it discusses the major mechanisms of radiation damage and procedures for radiation hardening, which allowed to extend the radiation tolerance of the devices by more than an order of magnitude.


Author(s):  
Sabrina Amrouche ◽  
Tobias Golling ◽  
Moritz Kiehn ◽  
Claudia Plant ◽  
Andreas Salzburger

2014 ◽  
Vol 1070-1072 ◽  
pp. 24-29
Author(s):  
Xiao Di Qin ◽  
Rong Rong Zhou ◽  
Lie Xia ◽  
Liang Hui Xu

Based on practical project and application, the design scheme of small capacity of integrated PV and storage grid-connected generation system is presented in this paper. For demonstrative and experimental purpose in this project, it includes several typical PV modules, tracking system and grid-connected inverters. Entire design scheme covers system integration, grid-connected solution, PV array and bracket, monitoring system, energy storage system, and etc. Configuration and application prospect of energy storage system in grid-connected PV system are mainly introduced. The characteristics of lithium battery and vanadium redox flow battery, as well as their application in the field of distributed power generation are researched.


1990 ◽  
Vol 42 (4) ◽  
pp. 1519-1529 ◽  
Author(s):  
S. Shaheen ◽  
F. D. Becchetti ◽  
D. A. Roberts ◽  
J. W. Jänecke ◽  
R. L. Stern ◽  
...  

2016 ◽  
Vol 903 ◽  
pp. 204-210 ◽  
Author(s):  
A.A. Bylinkin ◽  
N.S. Chernyavskaya ◽  
A.A. Rostovtsev

Sign in / Sign up

Export Citation Format

Share Document