Mobile solar power stations for use in the field

Author(s):  
V.G. Litovchenko ◽  
◽  
V.P. Melnik ◽  
B.M. Romanyuk ◽  
B.F. Dvernikov ◽  
...  
Keyword(s):  
2018 ◽  
Vol 51 ◽  
pp. 02002 ◽  
Author(s):  
Stanislav Eroshenko ◽  
Alexandra Khalyasmaa

The paper presents a short-term forecasting model for solar power stations (SPS) generation developed by the authors. This model is based on weather data and built into the existing software product as a separate short-term forecasting module for the SPS generation. The main problems associated with forecasting the SPS generation on cloudy days were revealed in the framework of authors' research, which is due not to the error of the developed model but to the use of the same learning sample for both solar and cloudy days. This paper contains analysis of the main problems related to the learning sampling, samples pattern, quality and representativeness for forecasting the SPS generation on cloudy days. Besides, the paper includes a calculation example performed for the existing SPS and a detailed analysis of the forecast generation on cloudy days based on the actual weather provider data.


Author(s):  
Petro Lezhnyuk ◽  
Iryna Hunko ◽  
Juliya Malogulko ◽  
Iryna Kotylko ◽  
Lіudmyla Krot

Urgency of the research. Current trends of distributed generation development in Ukraine indicate a rapid generation in-crease from renewable energy plants. Most developed countries gradually refuse from the fossil fuels use and invest more and more to the “green” energy. Therefore, there is a need for a detailed study of the operation conditions of distributed energy sources due to their instability, as well as the processes that arise in distribution electric networks with diverse types of distributed energy sources. Target setting. In the producing process of power energy by distributed energy sources due to the increase in their num-ber, there are situations where several renewable sources of energy operate to only one system of buses. Thus, such distributive networks acquire the features of a local power system, which complicates the control process of such systems, and also there is a problem with the electricity supply of consumers. Actual scientific researches and issues analysis. The analysis of publications suggests that in literature more attention is paid to studying the operating modes of solar power plants, or small hydroelectric power plants. However, almost no attention was paid to the study of their cooperation work. Uninvestigated parts of general matters defining. Only a few works are devoted to the study of the cooperation of the diverce sources of distributed energy sources in the local electrical systems. That is why, their impact on power distribution networks and on the grid in general has not been studied extensively. The research objective. In this article was considered the influence of asynchronous generators on small hydroelectric power plants on the operation modes of distribution electrical networks, and were investigated the processes that are occurring in local power systems with different types of distributed energy sources. The statement of basic materials. Based on the research results, was developed a computer model of a such system in the PS CAD software environment. Two solar stations and one small hydroelectric power station with an asynchronous generator were connected to the power supply. It was shown the simulation of two modes of operation: a joint operation of a small hydroelectric power station, two solar power stations and a power supply center; a joint operation of a small hydroelectric pow-er plant, two solar power stations and a power supply disconnected. Conclusions. As a result of computer simulation, it is shown that by switching on a small hydroelectric power plant with an asynchronous generator in the case of an emergency shutdown of centralized power supply, it is possible to restore the work of solar power plants, and thus partially or completely restore the power supply of consumers.


2018 ◽  
Vol 51 ◽  
pp. 02004 ◽  
Author(s):  
Stanislav Eroshenko ◽  
Alexandra Khalyasmaa ◽  
Denis Snegirev

The paper presents the operational model of very-short term solar power stations (SPS) generation forecasting developed by the authors, based on weather information and built into the existing software product as a separate module for SPS operational forecasting. It was revealed that one of the optimal mathematical methods for SPS generation operational forecasting is gradient boosting on decision trees. The paper describes the basic principles of operational forecasting based on the boosting of decision trees, the main advantages and disadvantages of implementing this algorithm. Moreover, this paper presents an example of this algorithm implementation being analyzed using the example of data analysis and forecasting the generation of the existing SPS.


Author(s):  
Samaan G. Ladkany ◽  
William G. Culbreth ◽  
Nathan Loyd

Molten salts (MS) in the 580°C range could be used to store excess energy from solar power stations and possibly from nuclear or coal. The energy can be stored up to a week in large containers at elevated temperature to generate eight hours of electricity to be used at night or during peak demand hours. This helps to reduce the fluctuation experienced at thermal solar power stations due to weather conditions. Our research supported by Office of Naval Research (ONR), presents a survey of salts to be used in molten salt technology. The physical characteristics of these salts such as density, melting temperature, viscosity, electric conductivity, surface tension, thermal capacity and cost are discussed. Cost is extremely important given the large volumes of salt required for energy storage at a commercial power station. Formulas are presented showing the amount of salt needed per required megawatts of stored energy depending on the type of salt. The estimated cost and the size of tanks required and the operating temperatures are presented. Recommendations are made regarding the most efficient type of molten salt to use. Commercial thermal solar power stations have been constructed in the US and overseas mainly in Spain for which molten salt is being considered. A field of flat mirrors together with collection towers are used in some designs and parabolic troughs used in others.


2011 ◽  
Vol 58 (11) ◽  
pp. 917-923 ◽  
Author(s):  
G. G. Raikunov ◽  
V. M. Mel’nikov ◽  
A. S. Chebotarev ◽  
V. I. Gusevskii ◽  
B. N. Kharlov

2018 ◽  
Vol 51 ◽  
pp. 02004
Author(s):  
Stanislav Eroshenko ◽  
Alexandra Khalyasmaa ◽  
Denis Snegirev

The paper presents the operational model of very-short term solar power stations (SPS) generation forecasting developed by the authors, based on weather information and built into the existing software product as a separate module for SPS operational forecasting. It was revealed that one of the optimal mathematical methods for SPS generation operational forecasting is gradient boosting on decision trees. The paper describes the basic principles of operational forecasting based on the boosting of decision trees, the main advantages and disadvantages of implementing this algorithm. Moreover, this paper presents an example of this algorithm implementation being analyzed using the example of data analysis and forecasting the generation of the existing SPS.


Sign in / Sign up

Export Citation Format

Share Document