Measurement of Transient Electric-fields Emitted from Micro-gap ESD in Spherical Electrodes by using Optical Electric-field Sensor

2018 ◽  
Vol 138 (6) ◽  
pp. 295-301
Author(s):  
Shinobu Ishigami ◽  
Ken Kawamata ◽  
Shigeki Minegishi ◽  
Osamu Fujiwara
2015 ◽  
Vol 32 (5) ◽  
pp. 993-1003 ◽  
Author(s):  
D. M. Mach

AbstractA generalized technique has been developed that reduces the contributions of nonlinear effects that occur during measurements of natural electric fields around thunderstorms by an array of field mills on an aircraft. The nonlinear effects can be due to nearby charge emitted by the aircraft as it acquires and sheds charge, but the nonlinear effects are not limited to such sources. The generalized technique uses the multiple independent measurements of the external electric field obtained during flight to determine and remove nonlinear contaminations in the external vector electric field. To demonstrate the technique, a simulated case with nonlinear contaminations was created and then corrected for the nonlinear components. In addition, data from two different field programs utilizing two different aircraft and field mill configurations, each containing observable and different nonlinear effects, were also corrected for the significant nonlinear effects found in the field mill outputs. The expanded independent measurements in this new technique allow for the determination and correction of components in the field mill outputs from almost any measurable source. Alternate utilization of the technique can include removing effects in the aircraft charging such as aircraft altitude, cloud properties, engine power settings, or aircraft flap deployment. This technique provides a way to make more precise measurements of the true external electric field for scientific studies of cloud electrification.


Author(s):  
Miaomiao Cheng ◽  
Jingen Wu ◽  
mengmeng Guan ◽  
Qi Mao ◽  
dan Xian ◽  
...  

Abstract The rapid development of the internet of things (IOT) technology has led to great demand for intelligent electric field sensor (EFS). Several working principles have been proposed, however major challenges remain existed for the requirements of EFS with low-cost, large-range, and high-resolution. In this paper, an EFS based on piezoelectric bending effect using d31 mode is developed, where a bending strain is induced on the sandwiched bimorph structure of PZT/PDMS/PZT under an applied electric field, and the capacitance value of the PDMS layer reveals detectable variation. We demonstrate an electric field sensor operating at the stress-mediated coupling between piezoelectric ceramic and elastic dielectric polymer, which reveals advantages such as simple fabrication process, low-cost and low power consumption. Due to the sandwiched bimorph structure, the strain caused by the electric field can be effectively transferred to improve the resolution of the device. The constitutive equations for the sandwiched bimorph structure are built, and the working principle of the proposed EFS is demonstrated. The EFS exhibits high sensitivity under both AC and DC electric fields, with a resolution of 0.1V/cm in the range of -3 to 3kV/cm. The proposed sensor provides an alternative solution for power equipment fault diagnosis, power frequency electric field detection, etc.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8327
Author(s):  
Gunbok Lee ◽  
Jeong-Yeon Kim ◽  
Gildong Kim ◽  
Jae Hee Kim

When a drone is used for inspection of facilities, there are often cases in which high-voltage power lines interfere, resulting in the drone being caught or falling. To prevent this type of incident, drones must be capable of detecting high-voltage power lines. Typically, a strong electric field is formed around the high-voltage lines. To detect the electric fields around high-voltage lines, this study proposes an electric field sensor that may be integrated within the body of a drone. In a laboratory environment, a voltage of 25 kV was applied to an overhead line, and the induced voltage in the proposed sensor was measured at various electric field intensities. Over an electric field range of 0.5 to 10.1 kV/m, a voltage of 0 to 0.77 V was measured with each proposed sensor. In addition, the electric field and the voltage induced in the sensor were measured in a real-world railway environment with overhead lines. Under these conditions, the proposed sensor has the compensated value of 4.5 when the measured electric field was 4.05 kV/m. Therefore, the proposed sensor may be applied in drones to measure large electric fields and to detect the presence of high-voltage lines in its vicinity.


2020 ◽  
Author(s):  
Stefan Chindea ◽  
Keri Nicoll

<p>Characterisation of the vertical variation in the atmospheric electric field has been made for many decades, but normally in an ad-hoc manner, using instrumented weather balloons or manned aircraft, which are expensive to fly.  Such vertical measurements are required to measure the ionospheric potential and to characterise electric fields with clouds (both thunderstorm and non thunderstorm clouds) to understand the charging processes within them. </p><p>Advances in electronics and battery technology has meant that small Unmanned Aerial Vehicles (UAVs) have now become available as a new science platform. These measurement platforms address many of the problems associated with manned aircraft while allowing in-situ measurements with an increased level of control and repeatability when compared to weather balloons. Despite their potential advantages, one of the main challenges to using UAVs for atmospheric electricity research is the lack of small, lightweight sensors which are commercially available. To overcome this barrier, this work describes the development of a lightweight, miniaturised electric field sensor to be integrated with a small UAV (<7kg, wingspan 2m). </p><p>The sensor has been designed to allow measurements of the electric field intensities typical of non-thunderstorm low altitude (<6000 ft) clouds with a typical range of 0-2.5kV/m. It is based on the concept of an electric field mill, but with a translational shield rather than a rotating vane model. This allows the sensor to fit neatly within the wing of a small UAV, rather than the need to be mounted in the nose.  A custom designed 3D printed housing contains all elements of the sensor package, with the translational shield movement and data logging controlled by an onboard programmable microcontroller. This work will focus on the details regarding the experimental characterisation of the sensor package with a particular focus on the key influences of the integration with the airborne platform.</p>


Author(s):  
Frank LaBella ◽  
Filipe Fernandes

The olfactory system is capable of distinguishing individual odorants from among  a virtually unlimited number. Fish, for example, detect changes in the electric field environment induced by prey and other sources.   Floral electric fields exhibit variations in pattern and structure, which can be discriminated by bumblebees.  We have constructed an electric field sensor, which, in the course of focussing on achieving maximum sensitivity and consistency, ultimately resembles features of the insect sensorium. A “fingerprint” 3D plot ( time, frequency range, voltage amplitude), representing the emitted electric field profile, is presented for each of a variety of odorants and other chemicals. The substance-specific electric-field emission and identification is not impeded by containers or barriers or distance.


2016 ◽  
Vol 31 (02n03) ◽  
pp. 1641032 ◽  
Author(s):  
Viktor Petrov ◽  
Andrey Medvedev ◽  
Leonid Liokumovich ◽  
Anton Miazin

In this paper, we present a new design of the interferometer, intended for high-precision measurements of electric fields. We combined both arms of the interferometer in one segment of the fiber and the electric field sensor. The interferometer made using this scheme has a high resistance to mechanical and thermal fluctuations.


2020 ◽  
Vol 140 (12) ◽  
pp. 599-600
Author(s):  
Kento Kato ◽  
Ken Kawamata ◽  
Shinobu Ishigami ◽  
Ryuji Osawa ◽  
Takeshi Ishida ◽  
...  

2020 ◽  
Vol 32 (23) ◽  
pp. 1501-1504
Author(s):  
Jiahong Zhang ◽  
Dubing Yang ◽  
Changsheng Zhang ◽  
Zhengang Zhao

Nano Letters ◽  
2021 ◽  
Author(s):  
Halleh B. Balch ◽  
Allister F. McGuire ◽  
Jason Horng ◽  
Hsin-Zon Tsai ◽  
Kevin K. Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document