Technique for Reducing the Effects of Nonlinear Terms on Electric Field Measurements of Electric Field Sensor Arrays on Aircraft Platforms

2015 ◽  
Vol 32 (5) ◽  
pp. 993-1003 ◽  
Author(s):  
D. M. Mach

AbstractA generalized technique has been developed that reduces the contributions of nonlinear effects that occur during measurements of natural electric fields around thunderstorms by an array of field mills on an aircraft. The nonlinear effects can be due to nearby charge emitted by the aircraft as it acquires and sheds charge, but the nonlinear effects are not limited to such sources. The generalized technique uses the multiple independent measurements of the external electric field obtained during flight to determine and remove nonlinear contaminations in the external vector electric field. To demonstrate the technique, a simulated case with nonlinear contaminations was created and then corrected for the nonlinear components. In addition, data from two different field programs utilizing two different aircraft and field mill configurations, each containing observable and different nonlinear effects, were also corrected for the significant nonlinear effects found in the field mill outputs. The expanded independent measurements in this new technique allow for the determination and correction of components in the field mill outputs from almost any measurable source. Alternate utilization of the technique can include removing effects in the aircraft charging such as aircraft altitude, cloud properties, engine power settings, or aircraft flap deployment. This technique provides a way to make more precise measurements of the true external electric field for scientific studies of cloud electrification.

2007 ◽  
Vol 24 (9) ◽  
pp. 1576-1587 ◽  
Author(s):  
D. M. Mach ◽  
W. J. Koshak

Abstract A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized (e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).


2016 ◽  
Vol 31 (02n03) ◽  
pp. 1641032 ◽  
Author(s):  
Viktor Petrov ◽  
Andrey Medvedev ◽  
Leonid Liokumovich ◽  
Anton Miazin

In this paper, we present a new design of the interferometer, intended for high-precision measurements of electric fields. We combined both arms of the interferometer in one segment of the fiber and the electric field sensor. The interferometer made using this scheme has a high resistance to mechanical and thermal fluctuations.


2014 ◽  
Vol 548-549 ◽  
pp. 646-649
Author(s):  
Ping Hu ◽  
Rui Yong Yue ◽  
Ji Tian

The traceability of underwater electric field sensors is to track the most essential reason for underwater electric field generated by the sensor.When exploring marine electromagnetic field by underwater electric field sensors ,the underwater electric field sensor calibration traceability of the underwater electric field directly affects the final research significance .Therefore,the underwater electric field sensor calibration traceability technique is very important.The underwater electric field sensor calibration traceability is still in its infancy in our country recently .In this paper,underwater electric field sensor calibration traceability based on Ohm's law and magnetic field gradient methods are proposed through theoretical analysis and numerical simulation,which provide test methods for our underwater electric field sensor calibration and solve the bottleneck problem of underwater electric field measurements.


Author(s):  
Miaomiao Cheng ◽  
Jingen Wu ◽  
mengmeng Guan ◽  
Qi Mao ◽  
dan Xian ◽  
...  

Abstract The rapid development of the internet of things (IOT) technology has led to great demand for intelligent electric field sensor (EFS). Several working principles have been proposed, however major challenges remain existed for the requirements of EFS with low-cost, large-range, and high-resolution. In this paper, an EFS based on piezoelectric bending effect using d31 mode is developed, where a bending strain is induced on the sandwiched bimorph structure of PZT/PDMS/PZT under an applied electric field, and the capacitance value of the PDMS layer reveals detectable variation. We demonstrate an electric field sensor operating at the stress-mediated coupling between piezoelectric ceramic and elastic dielectric polymer, which reveals advantages such as simple fabrication process, low-cost and low power consumption. Due to the sandwiched bimorph structure, the strain caused by the electric field can be effectively transferred to improve the resolution of the device. The constitutive equations for the sandwiched bimorph structure are built, and the working principle of the proposed EFS is demonstrated. The EFS exhibits high sensitivity under both AC and DC electric fields, with a resolution of 0.1V/cm in the range of -3 to 3kV/cm. The proposed sensor provides an alternative solution for power equipment fault diagnosis, power frequency electric field detection, etc.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1970 ◽  
Author(s):  
Wang ◽  
Yan ◽  
Liu ◽  
Su ◽  
Yan

This paper presents a novel tangential electric-field sensor with an embedded integrated balun for sensing up a tangential electric field over a circuit surface in the near-field measurements covering the GPS band. The integrated balun is embedded into the sensor to transform the differential voltage induced by the electric dipole into the single output voltage. The measurement system with a high mechanical resolution for the characterizations and tests of the sensor is detailed in this paper. The frequency response of the sensor characterized by a microstrip line from 1.35 GHz to 1.85 GHz (covering the GPS band) is rather flat. The rejection to the magnetic field of the sensor is up to 20.1 dB. The applications and validations of the sensor are conducted through passive/active circuit measurements.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8327
Author(s):  
Gunbok Lee ◽  
Jeong-Yeon Kim ◽  
Gildong Kim ◽  
Jae Hee Kim

When a drone is used for inspection of facilities, there are often cases in which high-voltage power lines interfere, resulting in the drone being caught or falling. To prevent this type of incident, drones must be capable of detecting high-voltage power lines. Typically, a strong electric field is formed around the high-voltage lines. To detect the electric fields around high-voltage lines, this study proposes an electric field sensor that may be integrated within the body of a drone. In a laboratory environment, a voltage of 25 kV was applied to an overhead line, and the induced voltage in the proposed sensor was measured at various electric field intensities. Over an electric field range of 0.5 to 10.1 kV/m, a voltage of 0 to 0.77 V was measured with each proposed sensor. In addition, the electric field and the voltage induced in the sensor were measured in a real-world railway environment with overhead lines. Under these conditions, the proposed sensor has the compensated value of 4.5 when the measured electric field was 4.05 kV/m. Therefore, the proposed sensor may be applied in drones to measure large electric fields and to detect the presence of high-voltage lines in its vicinity.


2020 ◽  
Author(s):  
Stefan Chindea ◽  
Keri Nicoll

<p>Characterisation of the vertical variation in the atmospheric electric field has been made for many decades, but normally in an ad-hoc manner, using instrumented weather balloons or manned aircraft, which are expensive to fly.  Such vertical measurements are required to measure the ionospheric potential and to characterise electric fields with clouds (both thunderstorm and non thunderstorm clouds) to understand the charging processes within them. </p><p>Advances in electronics and battery technology has meant that small Unmanned Aerial Vehicles (UAVs) have now become available as a new science platform. These measurement platforms address many of the problems associated with manned aircraft while allowing in-situ measurements with an increased level of control and repeatability when compared to weather balloons. Despite their potential advantages, one of the main challenges to using UAVs for atmospheric electricity research is the lack of small, lightweight sensors which are commercially available. To overcome this barrier, this work describes the development of a lightweight, miniaturised electric field sensor to be integrated with a small UAV (<7kg, wingspan 2m). </p><p>The sensor has been designed to allow measurements of the electric field intensities typical of non-thunderstorm low altitude (<6000 ft) clouds with a typical range of 0-2.5kV/m. It is based on the concept of an electric field mill, but with a translational shield rather than a rotating vane model. This allows the sensor to fit neatly within the wing of a small UAV, rather than the need to be mounted in the nose.  A custom designed 3D printed housing contains all elements of the sensor package, with the translational shield movement and data logging controlled by an onboard programmable microcontroller. This work will focus on the details regarding the experimental characterisation of the sensor package with a particular focus on the key influences of the integration with the airborne platform.</p>


Sign in / Sign up

Export Citation Format

Share Document