Study of Reactance Evaluation Methods in Saturated Magnetic Field for Permanent Magnet Synchronous Motor

2006 ◽  
Vol 126 (12) ◽  
pp. 1722-1729 ◽  
Author(s):  
Akeshi Takahashi ◽  
Haruo Koharagi ◽  
Satoshi Kikuchi ◽  
Kazumasa Ide ◽  
Kazuo Shima
Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 535 ◽  
Author(s):  
Dajun Tao ◽  
Kai Liang Zhou ◽  
Fei Lv ◽  
Qingpeng Dou ◽  
Jianxiao Wu ◽  
...  

This study focuses on the core losses in the stator region of high-speed permanent magnet synchronous motors, magnetic field characteristics in the load region, and variations in iron losses caused by changes in these areas. A two-pole 120 kW high-speed permanent magnet synchronous motor is used as the object of study, and a two-dimensional transient electromagnetic field-variable load circuit combined calculation model is established. Based on electromagnetic field theory, the electromagnetic field of the high-speed permanent magnet synchronous motor under multi-load conditions is calculated using the time-stepping finite element method. The magnetic field distribution of the high-speed permanent magnet synchronous motor under a multi-load condition is obtained, and the variations in iron core losses in different parts of the motor under multi-load conditions are further analyzed. The calculation results show that most of the stator iron core losses are dissipated in the stator yoke. The stator yoke iron loss under the no-load condition exceeds 70% of the total stator iron core loss. The stator yoke iron loss under rated operation conditions exceeds 50% of the total stator iron core loss. The stator loss under rated load operation conditions is higher than that under no-load operation. These observations are sufficient to demonstrate that the running status of high-speed motors is closely related to the stator iron losses, which have significance in determining the reasonable yoke structure of high-speed and high-power motors and the cooling methods of motor stators.


2019 ◽  
Vol 43 (4) ◽  
pp. 515-525
Author(s):  
Hongbo Qiu ◽  
Yong Zhang ◽  
Cunxiang Yang ◽  
Ran Yi

The application of an inverter is becoming more and more widespread in the surface-mounted permanent-magnet synchronous motor (SMPMSM). A large number of voltage harmonics can be generated by the inverter. The electromagnetic torque, loss, and air-gap magnetic density of the SMPMSM are affected by voltage harmonic. To analyze its influence, taking a 3 kW 1500 r/min SMPMSM as an example, a two-dimensional transient electromagnetic field model is established. The correctness of the model is verified by comparing the experimental data with the calculated data. Firstly, the finite element method is used to calculate the electromagnetic field of the SMPMSM, and the performance parameters of the SMPMSM are obtained. Based on these parameters, the influence of voltage harmonic on motor performance is analyzed quantitatively. Secondly, the influence of the voltage harmonic on the air-gap magnetic field is analyzed, and the influence degree of the time harmonic on the air-gap magnetic field is determined. At the same time, torque ripple, average torque, and loss are studied when the different harmonics orders, amplitudes, and phase angles are contained in voltage, and the variation is obtained. Finally, the variation mechanism of eddy current loss is revealed. The conclusion of this paper provides reliable theoretical guidance for improving motor performance.


Sign in / Sign up

Export Citation Format

Share Document