Stability Analysis of Sensorless Speed Control for PMSM Considered Current Control System

2018 ◽  
Vol 138 (11) ◽  
pp. 848-856
Author(s):  
Sari Maekawa ◽  
Mariko Sugimoto ◽  
Keiichi Ishida ◽  
Masaya Nogi ◽  
Masaki Kanamori
2019 ◽  
Vol 8 (4) ◽  
pp. 736-744 ◽  
Author(s):  
Sari Maekawa ◽  
Mariko Sugimoto ◽  
Keiichi Ishida ◽  
Masaya Nogi ◽  
Masaki Kanamori

Author(s):  
Arifin Wahid Ibrahim ◽  
Triyogatama Wahyu Widodo ◽  
Tri Wahyu Supardi

AbstrakPenggunaan motor DC di dunia industri sangat penting. Kecepatan dan torsi motor DC sangat mempengaruhi kualitas dan kuantitas produk yang dihasilkan. Untuk itu, diperlukan sistem kontrol motor DC yang dapat diatur kecepatan dan torsinya. Banyak pelaku industri mengeluhkan kerusakan pada motor DC disebakan beban yang diangkut motor melebihi kemampuan torsi motornya. Berdasarkan permasalahan tersebut dibuatlah sistem kontrol torsi motor DC.Sistem kontrol torsi dibuat dengan cara mengatur arus armaturnya pada motor DC penguat terpisah dengan kondisi arus fieldnya tetap. Sistem kontrol torsi ini bersifat dua level yaitu, sistem kontrol kecepatan dan sistem kontrol arus sehingga sinyal keluaran sistem kontrol kecepatan akan menjadi sinyal reference arus.Pengujian dilakukan dengan beban maksimal 3690 gram dan arus nominal sebesar 0,8 A atau torsi nominal sebesar 0,323 Nm. Hasil menunjukkan torsi efektif motor mampu diatur dengan kisaran 0,182 Nm - 0,243 Nm. Diharapkan dengan harga torsi efektif yang diatur mampu menahan beban seberat apapun tanpa merusak motor tersebut.Kata kunci—  Motor DC, Kecepatan, TorsiAbstractThe use of a DC motor in the industrialized world is very important. Speed of DC motor and torque of DC motor greatly affects quality and quantity of product. Therefore, we need control system of a DC motor that can be set speed and torque. The number of industry players complained about damage to the DC motor because transported load torque of motor exceeds capabilities of torque of DC motor. Based on these problem, we should make torque control system in DC motor.Torque control system made by regulating armature current of DC motor separately excited with current field  constant condition. Torque control system consist of speed control and current control, namely control system two level. Output signal speed control system will be the current reference signal.Testing has been carried out with a maximum load of 3690 grams and a nominal current of 0.8 A or nominal torque of 0.323 Nm. The results shows the effective torque of motor is able to be set in the range of 0.182 Nm - 0,243 Nm. Expected to value effective of regulated torque is able to withstand infinite heavy loads without damaging the motor.Keywords—  DC Motor, Speed, Torque


2013 ◽  
Vol 732-733 ◽  
pp. 1115-1118
Author(s):  
Jun Wei Li ◽  
Zhen Dong Zhang ◽  
Yuan Yuan Ni

The switch reluctance motor (SRM) speed control system is often difficult to control due to its nonlinearities and parameter variations. In this paper, a fuzzy logic control (FLC) system has been presented to speed control of the SRM. The control system is composed of speed controller and current controller. The main task of the speed controller is to provide the appropriate control signal to the current controller based on the difference between the desired speed and the actual speed of the motor. In the speed control part, the fuzzy controller is used to reject the unknown and uncertain parameters in the SRM and in the load torque. The current controller evaluates the difference between the actual and the desired phase current and implements hysteresis current control. Simulation results demonstrate the effectiveness of the proposed control strategy under different operating conditions of the SRM.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1494 ◽  
Author(s):  
Marcel Nicola ◽  
Claudiu-Ionel Nicola

The field oriented control (FOC) strategy of the permanent magnet synchronous motor (PMSM) includes all the advantages deriving from the simplicity of using PI-type controllers, but inherently the control performances are limited due to the nonlinear model of the PMSM, the need for wide-range and high-dynamics speed and load torque control, but also due to the parametric uncertainties which occur especially as a result of the variation of the combined rotor-load moment of inertia, and of the load resistance. Based on the fractional calculus for the integration and differentiation operators, this article presents a number of fractional order (FO) controllers for the PMSM rotor speed control loops, and id and iq current control loops in the FOC-type control strategy. The main contribution consists of proposing a PMSM control structure, where the controller of the outer rotor speed control loop is of FO-sliding mode control (FO-SMC) type, and the controllers for the inner control loops of id and iq currents are of FO-synergetic type. Superior performances are obtained by using the control system proposed, even in the case of parametric variations. The performances of the proposed control system are validated both by numerical simulations and experimentally, through the real-time implementation in embedded systems.


Sign in / Sign up

Export Citation Format

Share Document