Multiport Converter Integrating Automatic Current Balancing Interleaved PWM Converter and DAB Converter with Improved Transformer Utilization for Electric Vehicles

2021 ◽  
Vol 141 (11) ◽  
pp. 903-911
Author(s):  
Motoki Sato ◽  
Masatoshi Uno ◽  
Yoshiya Tada

The design and analysis of higher efficiency non isolated DC-DC converter for Electric Vehicles is presented. A Battery Charging System (BCS) plays a key role in achieving fast charging and higher efficiency. The BCS integrates acascaded DC-DC converter and a bidirectional PWM converter. In order to achieve more reliability and stiff voltage, aCascaded buckboost converter which is partitioned with the help of a capacitor is integratedand to achieve higher efficiency with less number of switches, a bidirectional PWM converter used There are various PWM techniques, among them hysteresis and sinusoidal pwm technique are used. The output voltage obtained after both the operations (boost and buck) is given to the battery or load. Simulation is done in MATLAB and the results are analyzed with PI controller and without PI controller in this paper.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2334 ◽  
Author(s):  
Mayank Jha ◽  
Frede Blaabjerg ◽  
Mohammed Ali Khan ◽  
Varaha Satya Bharath Kurukuru ◽  
Ahteshamul Haque

Electric vehicles (EVs) are envisaged to be the future transportation medium, and demonstrate energy efficiency levels much higher than conventional gasoline or diesel-based vehicles. However, the sustainability of EVs is only justified if the electricity used to charge these EVs is availed from a sustainable source of energy and not from any fossil fuel or carbon generating source. In this paper, the challenges of the EV charging stations are discussed while highlighting the growing use of distributed generators in the modern electrical grid system. The benefits of the adoption of photovoltaic (PV) sources along with battery storage devices are studied. A multiport converter is proposed for integrating the PV, charging docks, and energy storage device (ESD) with the grid system. In order to control the bidirectional flow between the generating sources and the loads, an intelligent energy management system is proposed by adapting particle swarm optimization for efficient switching between the sources. The proposed system is simulated using MATLAB/Simulink environment, and the results depicted fast switching between the sources and less switching time without obstructing the fast charging to the EVs.


2018 ◽  
Vol 88 (6) ◽  
pp. 54-78
Author(s):  
Robert L. Reid
Keyword(s):  

2020 ◽  
Vol 119 (820) ◽  
pp. 317-322
Author(s):  
Michael T. Klare

By transforming patterns of travel and work around the world, the COVID-19 pandemic is accelerating the transition to renewable energy and the decline of fossil fuels. Lockdowns brought car commuting and plane travel to a near halt, and the mass experiment in which white-collar employees have been working from home may permanently reduce energy consumption for business travel. Renewable energy and electric vehicles were already gaining market share before the pandemic. Under pressure from investors, major energy companies have started writing off fossil fuel reserves as stranded assets that are no longer worth the cost of extracting. These shifts may indicate that “peak oil demand” has arrived earlier than expected.


Sign in / Sign up

Export Citation Format

Share Document