scholarly journals Consideration on AC (Power-Freqnency) Insulation Tests for High Voltage Power Equipment

2004 ◽  
Vol 124 (7) ◽  
pp. 977-983 ◽  
Author(s):  
Tadasu Takuma
Author(s):  
Sergey V. Pavlenko ◽  
◽  
Nikolay V. Silin ◽  
Nikolay I. Ignatyev ◽  
◽  
...  
Keyword(s):  

Instruments ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 7 ◽  
Author(s):  
Huatan Chen ◽  
Gaofeng Zheng ◽  
Juan Liu ◽  
Jiaxin Jiang ◽  
Guoyi Kang ◽  
...  

The precise manufacturing of micro/nano structures is the key to the rapid development of flexible micro/nano systems. In this paper, a sinusoidal high-voltage alternating current (AC) power is designed for electrohydrodynamic direct-writing (EDW) technology. A push-pull converting circuit is utilized as the direct current (DC) voltage regulator power of a full-bridge inverter circuit. A single-phase full-bridge inverter circuit is used to output the controllable AC voltage, which is then boost-filtered to output the high-voltage sinusoidal AC signal. The amplitude of the output sinusoidal voltage is proportional to the input voltage and the modulation degree of the sinusoidal pulse width modulation (SPWM) inverter circuit. Then, the designed sinusoidal high-voltage AC power is used in the AC EDW process to print micro-droplets. The deposition frequency and the average diameter of droplets can be effectively controlled by adjusting the voltage amplitude and the voltage frequency. The design of this sinusoidal high-voltage AC power will promote research on the applications of EDW technology in the field of micro/nano manufacturing.


2016 ◽  
Vol 18 (10) ◽  
pp. 103042 ◽  
Author(s):  
T Coletta ◽  
R Delabays ◽  
I Adagideli ◽  
Ph Jacquod
Keyword(s):  
Ac Power ◽  

2020 ◽  
Vol 24 (5) ◽  
pp. 1093-1104
Author(s):  
Alexandra Khalyasmaa ◽  

The purpose of the study is to analyze the practical implementation of high-voltage electrical equipment technical state estimation subsystems as a part of solving the lifecycle management problem based on machine learning methods and taking into account the effect of the adjacent power system operation modes. To deal with the problem of power equipment technical state analysis, i.e. power equipment state pattern recognition, XGBoost based on gradient boosting decision tree algorithm is used. Its main advantages are the ability to process gapped data and efficient operation with tabular data for solving classification and regression problems. The author suggests the formation procedure of correct and sufficient initial database for high-voltage equipment state pattern recognition based on its technical diagnostic data and the algorithm for training and testing sets creation in order to improve the identification accuracy of power equipment actual state. The description and justification of the machine learning method and corresponding error metrics are also provided. Based on the actual states of power transformers and circuit breakers the sets of technical diagnostic parameters that have the greatest impact on the accuracy of state identification are formed. The effectiveness of using power systems operation parameters as additional features is also confirmed. It is determined that the consideration of operation parameters obtained by calculation as a part of the training set for high-voltage equipment technical state identification makes it possible to improve the tuning accuracy. The developed structure and approaches to power equipment technical state analysis supplemented by power system operation mode data and diagnostic results provide an information link between the tasks of technological and dispatch control. This allows us to consider the task of power system operation mode planning from the standpoint of power equipment technical state and identify the priorities in repair and maintenance to eliminate power network “bottlenecks”.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5901
Author(s):  
Yongjie Nie ◽  
Meng Zhang ◽  
Yuanwei Zhu ◽  
Yu Jing ◽  
Wenli Shi ◽  
...  

Power equipment operates under high voltages, inducing space charge accumulation on the surface of key insulating structures, which increases the risk of discharge/breakdown and the possibility of maintenance workers experiencing electric shock accidents. Hence, a visualized non-equipment space charge detection method is of great demand in the power industry. Typical electrochromic phenomenon is based on redox of the material, triggered by a voltage smaller than 5 V with a continuous current in μA~mA level, which is not applicable to high electric fields above 106 V/m with pA~nA operation current in power equipment. Until now, no naked-eye observation technique has been realized for space charge detection to ensure the operation of power systems as well as the safety of maintenance workers. In this work, a viologen/poly(vinylidene fluoride-co-hexafluoropropylene)(P(VDF–HFP)) composite is investigated from gel to insulating bulk configurations to achieve high-voltage electrical-insulating electrochromism. The results show that viologen/P(VDF–HFP) composite bulk can withstand high electric fields at the 107 V/m level, and its electrochromism is triggered by space charges. This electrochromism phenomenon can be visually extended by increasing viologen content towards 5 wt.% and shows a positive response to voltage amplitude and application duration. As viologen/P(VDF–HFP) composite bulk exhibits a typical electrical insulating performance, it could be attached to the surface of insulating structures or clamped between metal and insulating materials as a space charge accumulation indicator in high-voltage power equipment.


Sign in / Sign up

Export Citation Format

Share Document