Touch Fault Calculation Method on Transmission Lines Stringing on the Same Tower based on Symmetrical Coordinate Method

2018 ◽  
Vol 138 (7) ◽  
pp. 591-597
Author(s):  
Kazuyuki Tanaka ◽  
Naoki Yamato ◽  
Norikazu Kanao ◽  
Shunsuke Aida
Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 67 ◽  
Author(s):  
Jian Hu ◽  
Xiaofu Xiong ◽  
Jing Chen ◽  
Wei Wang ◽  
Jian Wang

The overload degree of a transmission line is represented by currents in traditional overload protection, which cannot reflect its safety condition accurately. The sudden rise in transmission line current may lead to cascading tripping under traditional protection during power flow transfer in a power system. Therefore, timely and accurate analysis of the transient temperature rise of overhead transmission lines, revealing their overload endurance capability under the premise of ensuring safety, and coordination with power system controls can effectively eliminate overloading. This paper presents a transient temperature calculation method for overhead transmission lines based on an equivalent thermal network. This method can fully consider the temperature-dependent characteristics with material properties, convective heat resistance, and radiation heat and can accurately calculate the gradient distribution and response of the conductor cross-section temperature. The validity and accuracy of the proposed calculation method are verified by a test platform. In addition, a multi-parameter thermal protection strategy is proposed on the basis of the abovementioned calculation method. The protection can adequately explore the maximum overload capability of the line, and prevent from unnecessary tripping to avoid the expansion of accidents. Finally, the validity of the proposed protection is verified by the modified 29-bus system.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012028
Author(s):  
Dengjie Zhu ◽  
Yongli Liao ◽  
Hao Li ◽  
Jie Tang ◽  
Zenghao Huang ◽  
...  

Abstract Transmission lines inevitably cross railroads, highways, and other facilities, and in order to ensure the safety and reliability of the cross-crossing section, the influence of various random factors on important cross-crossing transmission lines needs to be fully considered. In this paper, the transmission line crossing section is treated as a tandem system according to the force transmission route, and the reliability calculation method of the cross-crossing transmission line system based on the tandem system is proposed. The reliability calculation method of each component and the reliability calculation method of the tandem system are given. Finally, an example of the reliability calculation of a 220kV cross-crossing transmission line system is given, and the results show that the cross-crossing section has the highest reliability of tower FSJ404, with a reliability index of 8.61, the second highest reliability of insulators, with a reliability index of 7.22, and the lowest reliability of tower FSJ302, with a reliability index of 4.28. The failure probability of the cross-crossing section is 0.000009245, and the reliability index is 4.28.


2014 ◽  
Vol 1022 ◽  
pp. 165-168
Author(s):  
Pei Lin Li ◽  
Si Qi Lv ◽  
Tian Le Li

With the increasing development of China's power transmission project and social awareness of environmental protection, the problem of electromagnetic environment of transmission line has been widely concerned. This paper studies the electromagnetic environment around the transmission lines, analyzes the calculation method of power frequency electromagnetic field and the measures to reduce the power frequency electromagnetic field.


Sign in / Sign up

Export Citation Format

Share Document