scholarly journals Isolation and Screening of Azo Dyes Tolerant Bacteria in Semi-Scale Industrial Effluents

Author(s):  
V K Pandey ◽  
N Kumar ◽  
A K Bhardwaj

Dyes are organic compound have colouring properties of the object which used in industrial application. Huge effluent are releasing by industrial processing, where the microorganism may naturally adopted against particular problems. Present work focused over the selection and screening few best native candidates from diverse bacteria from semi-skilled dye industrial effluent. From eleven isolated bacterial colonies only two are found resistant against azo dyes (Methyl orange and Trypan blue). During the screening it observed that isolates of bacteria (VN1 and VN2) were tolerates and decolorize azo dye up to 500 ppm. These bacterial strain can be used efficientlyremoval of dyes contamina-tion from ex-situ and in-situ.

Author(s):  
Pushpa Chaudhary Tomar ◽  
Shilpa Samir Chapadgaonkar ◽  
Varsha Panchal ◽  
Arpita Ghosh

Industrial activities lead to the release of different types of toxic metals into the environment. Phytoremediation has been established as one of the environmental-friendly and economical processes that have the potential for the remediation of industrial waste. Phytoremediation is used to extract metals from industrial effluents using ex-situ and in-situ treatments. Also, phytoremediation may be used to reclaim the polluted land resource for agricultural purposes. Moreover, this also prevents the bioaccumulation and biomagnification of xenobiotics from farming activities if carried out from polluted land. Phyto-mining can be done to recover and reuse the heavy metals from plant tissues after phytoremediation by plants. This study aimed to give a comprehensive review of recent research work in heavy metal phytoremediation.


Author(s):  
Srimala Sreekantan ◽  
Roshasnorlyza Hazan ◽  
Zainovia Lockman ◽  
Ishak Mat

The present study is directed to clarify the influence of carbon doping on the degradation of methyl orange. TiO2 nanotubes were prepared by anodizing titanium foils in a two electrode configuration bath with titanium foil as the anode and platinum as the counter electrode. The electrochemical bathconsists of 1 M Na2SO4 with 0.7 g ammonium fluoride, NH4F. The nanotubes obtained were further doped with carbon via in-situ and ex-situ method. Incorporation of carbon on TiO2 via in-situ method is accomplished during the anodization process by introducing oxalic acid into electrolyte while theex-situ doping involves carbon incorporation into pre-fabricated TiO2 nanotube via flame annealing using carbon blackN330. Characterization such as Scanning Electron Microscope (SEM), Energy Dispersive X-ray Analysis (EDX), and X-Ray Diffraction (XRD) are used to determine the surfacemorphology, composition of dopants, and phases exists. Well ordered nanotube with good adherence and smooth surface was obtained for both methods. When the oxide was annealed, X-ray diffraction analysis revealed the presence of anatase and rutile phase. The photocatalytic properties of thepure TiO2 and carbon doped TiO2 were tested for methyl orange degradation and the result indicated that the in-situ doped TiO2 has much better degradation than the ex-situ and pure TiO2. The percentage of methyl orange degradation for in-situ was 20% and 41% higher than ex-situ doped TiO2 and pure TiO2, respectively.


2013 ◽  
Vol 291-294 ◽  
pp. 602-605 ◽  
Author(s):  
Liang Liu ◽  
Wen Yi Zhang

In this study we investigated the use of a microbial fuel cell (MFC) to abioticlly cathodic decolorization of a model azo dye, Methyl Orange (MO). Experimental results showed that electricity could be continuously generated the MO-fed MFC and MO was successfully decolorized in the cathode. The decolorization rate was highly dependent on the catholyte pH. When pH was varied from 3.0 to 9.0, the k value in relation to MO degradation decreased from 0.298 to 0.016 μmol min-1, and the maximum power density decreased from 34.77 to 1.51 mW m-2. Sulfanilic acid and N,N-dimethyl-p-phenylenediamine were identified as the decolorization products of MO by HPLC-MS.


Author(s):  
Talat Ara ◽  
Waqar-Un Nisa ◽  
Muzammil Anjum ◽  
Luqman Riaz ◽  
Aansa Rukya Saleem ◽  
...  

Abstract Pakistan is an agro-economy country where the hexachlorocyclohexane (HCH) pesticides is being used to improve the crop productivity, as a result, the risk of contamination of soil and sediment has been increased. HCH exhibits all the characteristics of persistent organic pollutants (POP), therefore; added to the list of ‘new POPs’ in 2009. This review report revealed that the major rivers of Pakistan such as Indus Basin, River Ravi, River Chenab and their tributaries all are contaminated with HCH and the highest residual concentration (4,090 ng/g) was detected in pesticide burial ground in Hyderabad city. Major sources of HCH contamination were identified as agricultural runoff, discharge of untreated industrial effluents and surface runoff. In order to manage HCH pollution, various ex-situ and in-situ remediation techniques along with their merits and demerits are thoroughly reviewed. Among these, microbial bioremediation is low cost, environment friendly, effective in-situ remediation technique for remediation of HCH. Overall, the information provided in this manuscript will provide a future reference to the scientific community and bridge the knowledge gap between HCH release in environment and their mitigation through proper treatment method.


2021 ◽  
Vol 45 (1) ◽  
pp. 117-122
Author(s):  
Mahmudul Hassan Suhag ◽  
KM Anis Ul Haque ◽  
Md Zobaidul Hossen ◽  
Abul Kalam Azad ◽  
Muhammad Younus

The bacterial isolate Bacillus sp. AZ28, obtained from industrial effluent, demonstrates a great capacity to degrade various azo dyes (methyl orange (MO), magneson I (MI), novacron dark blue (NDB), and novacron red FN 3GF (NRF3)), and azo dye-containing textile effluent (TE). The degradation was evident by decolorization of dyes, and the decolorization efficiency of 84-95% was achieved within 14-72 h under optimum conditions, such as 37˚C, pH 7, inoculation size 8%, 1% glucose, and 1% beef extract. The extent of decolorization of individual dye was determined by UV–Vis spectroscopy, and products of biodegradation were analyzed by FTIR spectroscopy and TLC analyses. Chemical analysis showed that the COD and BOD values were significantly reduced after treatment. Thus, the biodegradation ability under mild conditions suggests that Bacillus sp. AZ28 has potential in textile effluent treatment. J. Bangladesh Acad. Sci. 45(1); 117-122: June 2021


2016 ◽  
Vol 6 ◽  
pp. 45-53 ◽  
Author(s):  
R. Sasikala ◽  
K. Karthikeyan ◽  
D. Easwaramoorthy ◽  
I. Mohammed Bilal ◽  
S. Kutti Rani

Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


2017 ◽  
Author(s):  
Younghee Lee ◽  
Daniela M. Piper ◽  
Andrew S. Cavanagh ◽  
Matthias J. Young ◽  
Se-Hee Lee ◽  
...  

<div>Atomic layer deposition (ALD) of LiF and lithium ion conducting (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloys was developed using trimethylaluminum, lithium hexamethyldisilazide (LiHMDS) and hydrogen fluoride derived from HF-pyridine solution. ALD of LiF was studied using in situ quartz crystal microbalance (QCM) and in situ quadrupole mass spectrometer (QMS) at reaction temperatures between 125°C and 250°C. A mass gain per cycle of 12 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C and decreased at higher temperatures. QMS detected FSi(CH<sub>3</sub>)<sub>3</sub> as a reaction byproduct instead of HMDS at 150°C. LiF ALD showed self-limiting behavior. Ex situ measurements using X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) showed a growth rate of 0.5-0.6 Å/cycle, in good agreement with the in situ QCM measurements.</div><div>ALD of lithium ion conducting (AlF3)(LiF)x alloys was also demonstrated using in situ QCM and in situ QMS at reaction temperatures at 150°C A mass gain per sequence of 22 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C. Ex situ measurements using XRR and SE showed a linear growth rate of 0.9 Å/sequence, in good agreement with the in situ QCM measurements. Stoichiometry between AlF<sub>3</sub> and LiF by QCM experiment was calculated to 1:2.8. XPS showed LiF film consist of lithium and fluorine. XPS also showed (AlF<sub>3</sub>)(LiF)x alloy consists of aluminum, lithium and fluorine. Carbon, oxygen, and nitrogen impurities were both below the detection limit of XPS. Grazing incidence X-ray diffraction (GIXRD) observed that LiF and (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film have crystalline structures. Inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography revealed atomic ratio of Li:F=1:1.1 and Al:Li:F=1:2.7: 5.4 for (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film. These atomic ratios were consistent with the calculation from QCM experiments. Finally, lithium ion conductivity (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film was measured as σ = 7.5 × 10<sup>-6</sup> S/cm.</div>


Sign in / Sign up

Export Citation Format

Share Document