scholarly journals On Color Energy of Few Classes of Bipartite Graphs and Corresponding Color Complements

1970 ◽  
Vol 8 (1) ◽  
pp. 7-14
Author(s):  
Prajakta Bharat Joshi ◽  
Mayamma Joseph

For a given colored graph G, the color energy is defined as Ec(G) = Σλi, for i = 1, 2,…., n; where λi is a color eigenvalue of the color matrix of G, Ac (G) with entries as 1, if both the corresponding vertices are neighbors and have different colors; -1, if both the corresponding vertices are not neighbors and have same colors and 0, otherwise. In this article, we study color energy of graphs with proper coloring and L (h, k)-coloring. Further, we examine the relation between Ec(G) with the corresponding color complement of a given graph G and other graph parameters such as chromatic number and domination number. AMS Subject Classification: 05C15, 05C50

2018 ◽  
Vol 6 (1) ◽  
pp. 343-356
Author(s):  
K. Arathi Bhat ◽  
G. Sudhakara

Abstract In this paper, we introduce the notion of perfect matching property for a k-partition of vertex set of given graph. We consider nontrivial graphs G and GPk , the k-complement of graph G with respect to a kpartition of V(G), to prove that A(G)A(GPk ) is realizable as a graph if and only if P satis_es perfect matching property. For A(G)A(GPk ) = A(Γ) for some graph Γ, we obtain graph parameters such as chromatic number, domination number etc., for those graphs and characterization of P is given for which GPk and Γ are isomorphic. Given a 1-factor graph G with 2n vertices, we propose a partition P for which GPk is a graph of rank r and A(G)A(GPk ) is graphical, where n ≤ r ≤ 2n. Motivated by the result of characterizing decomposable Kn,n into commuting perfect matchings [2], we characterize complete k-partite graph Kn1,n2,...,nk which has a commuting decomposition into a perfect matching and its k-complement.


10.37236/3573 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Frédéric Meunier

Using a $\mathbb{Z}_q$-generalization of a theorem of Ky Fan, we extend to Kneser hypergraphs a theorem of Simonyi and Tardos that ensures the existence of multicolored complete bipartite graphs in any proper coloring of a Kneser graph. It allows to derive a lower bound for the local chromatic number of Kneser hypergraphs (using a natural definition of what can be the local chromatic number of a uniform hypergraph).


2020 ◽  
Vol 20 (02) ◽  
pp. 2050007
Author(s):  
P. C. LISNA ◽  
M. S. SUNITHA

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by φ(G), is the largest integer k such that G has a b-coloring with k colors. The b-chromatic sum of a graph G(V, E), denoted by φ′(G) is defined as the minimum of sum of colors c(v) of v for all v ∈ V in a b-coloring of G using φ(G) colors. The Mycielskian or Mycielski, μ(H) of a graph H with vertex set {v1, v2,…, vn} is a graph G obtained from H by adding a set of n + 1 new vertices {u, u1, u2, …, un} joining u to each vertex ui(1 ≤ i ≤ n) and joining ui to each neighbour of vi in H. In this paper, the b-chromatic sum of Mycielskian of cycles, complete graphs and complete bipartite graphs are discussed. Also, an application of b-coloring in image processing is discussed here.


2015 ◽  
Vol 07 (04) ◽  
pp. 1550043 ◽  
Author(s):  
B. S. Panda ◽  
Arti Pandey

In a graph [Formula: see text], a vertex [Formula: see text] dominates a vertex [Formula: see text] if either [Formula: see text] or [Formula: see text] is adjacent to [Formula: see text]. A subset of vertex set [Formula: see text] that dominates all the vertices of [Formula: see text] is called a dominating set of graph [Formula: see text]. The minimum cardinality of a dominating set of [Formula: see text] is called the domination number of [Formula: see text] and is denoted by [Formula: see text]. A proper coloring of a graph [Formula: see text] is an assignment of colors to the vertices of [Formula: see text] such that any two adjacent vertices get different colors. The minimum number of colors required for a proper coloring of [Formula: see text] is called the chromatic number of [Formula: see text] and is denoted by [Formula: see text]. A dominator coloring of a graph [Formula: see text] is a proper coloring of the vertices of [Formula: see text] such that every vertex dominates all the vertices of at least one color class. The minimum number of colors required for a dominator coloring of [Formula: see text] is called the dominator chromatic number of [Formula: see text] and is denoted by [Formula: see text]. In this paper, we study the dominator chromatic number for the proper interval graphs and block graphs. We show that every proper interval graph [Formula: see text] satisfies [Formula: see text], and these bounds are sharp. For a block graph [Formula: see text], where one of the end block is of maximum size, we show that [Formula: see text]. We also characterize the block graphs with an end block of maximum size and attaining the lower bound.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1036
Author(s):  
Abel Cabrera Martínez ◽  
Alejandro Estrada-Moreno ◽  
Juan Alberto Rodríguez-Velázquez

This paper is devoted to the study of the quasi-total strong differential of a graph, and it is a contribution to the Special Issue “Theoretical computer science and discrete mathematics” of Symmetry. Given a vertex x∈V(G) of a graph G, the neighbourhood of x is denoted by N(x). The neighbourhood of a set X⊆V(G) is defined to be N(X)=⋃x∈XN(x), while the external neighbourhood of X is defined to be Ne(X)=N(X)∖X. Now, for every set X⊆V(G) and every vertex x∈X, the external private neighbourhood of x with respect to X is defined as the set Pe(x,X)={y∈V(G)∖X:N(y)∩X={x}}. Let Xw={x∈X:Pe(x,X)≠⌀}. The strong differential of X is defined to be ∂s(X)=|Ne(X)|−|Xw|, while the quasi-total strong differential of G is defined to be ∂s*(G)=max{∂s(X):X⊆V(G)andXw⊆N(X)}. We show that the quasi-total strong differential is closely related to several graph parameters, including the domination number, the total domination number, the 2-domination number, the vertex cover number, the semitotal domination number, the strong differential, and the quasi-total Italian domination number. As a consequence of the study, we show that the problem of finding the quasi-total strong differential of a graph is NP-hard.


2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{Δ}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


Author(s):  
Fairouz Beggas ◽  
Hamamache Kheddouci ◽  
Walid Marweni

In this paper, we introduce and study a new coloring problem of graphs called the double total dominator coloring. A double total dominator coloring of a graph [Formula: see text] with minimum degree at least 2 is a proper vertex coloring of [Formula: see text] such that each vertex has to dominate at least two color classes. The minimum number of colors among all double total dominator coloring of [Formula: see text] is called the double total dominator chromatic number, denoted by [Formula: see text]. Therefore, we establish the close relationship between the double total dominator chromatic number [Formula: see text] and the double total domination number [Formula: see text]. We prove the NP-completeness of the problem. We also examine the effects on [Formula: see text] when [Formula: see text] is modified by some operations. Finally, we discuss the [Formula: see text] number of square of trees by giving some bounds.


2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Brice Effantin ◽  
Hamamache Kheddouci

International audience The b-chromatic number of a graph G is defined as the maximum number k of colors that can be used to color the vertices of G, such that we obtain a proper coloring and each color i, with 1 ≤ i≤ k, has at least one representant x_i adjacent to a vertex of every color j, 1 ≤ j ≠ i ≤ k. In this paper, we discuss the b-chromatic number of some power graphs. We give the exact value of the b-chromatic number of power paths and power complete binary trees, and we bound the b-chromatic number of power cycles.


2015 ◽  
Vol Vol. 17 no.2 (Graph Theory) ◽  
Author(s):  
Robert Šámal

International audience We introduce a new graph parameter that measures fractional covering of a graph by cuts. Besides being interesting in its own right, it is useful for study of homomorphisms and tension-continuous mappings. We study the relations with chromatic number, bipartite density, and other graph parameters. We find the value of our parameter for a family of graphs based on hypercubes. These graphs play for our parameter the role that cliques play for the chromatic number and Kneser graphs for the fractional chromatic number. The fact that the defined parameter attains on these graphs the correct value suggests that our definition is a natural one. In the proof we use the eigenvalue bound for maximum cut and a recent result of Engström, Färnqvist, Jonsson, and Thapper [An approximability-related parameter on graphs – properties and applications, DMTCS vol. 17:1, 2015, 33–66]. We also provide a polynomial time approximation algorithm based on semidefinite programming and in particular on vector chromatic number (defined by Karger, Motwani and Sudan [Approximate graph coloring by semidefinite programming, J. ACM 45 (1998), no. 2, 246–265]).


2018 ◽  
Vol 5 (2) ◽  
pp. 11-15
Author(s):  
Aaresh R.R ◽  
Venkatachalam M ◽  
Deepa T

Dynamic coloring of a graph G is a proper coloring. The chromatic number of a graph G is the minimum k such that G has a dynamic coloring with k colors. In this paper we investigate the dynamic chromatic number for the Central graph, Middle graph, Total graph and Line graph of Web graph Wn denoted by C(Wn), M(Wn), T(Wn) and L(Wn) respectively.


Sign in / Sign up

Export Citation Format

Share Document