STUDIES OF SERUM ELECTROLYTE CHANGES DURING EXCHANGE TRANSFUSION

PEDIATRICS ◽  
1954 ◽  
Vol 13 (5) ◽  
pp. 412-418
Author(s):  
GERALD MILLER ◽  
AUGUSTA B. MCCOORD ◽  
HOWARD A. JOOS ◽  
SAMUEL W. CLAUSEN

Alterations in concentrations of serum potassium are reported in infants studied during exchange transfusion therapy for erythroblastosis. The elevated plasma potassium content of citrated whole blood following prolonged storage may produce hyperkaliemia in some infants. The authors have suggested that hypocalcemia and hyperkaliemia may coexist in some of these babies during exchange transfusion. Certain implications regarding the cumulative effects of these two disturbances are discussed in relation to exchange transfusion.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 999-999
Author(s):  
Fabiola Grizzatti ◽  
Melissa A Qazi ◽  
David Stroncek ◽  
Nathawut Sibmooh ◽  
Barbora Piknova ◽  
...  

Abstract In light of recent papers stressing the importance of decreased levels of SNO-hemoglobin (SNO-Hb) to the pronounced nature of deleterious effects of transfusion of stored red blood cells (RBCs), there has been an increased interest in the practice of blood storage. Dejam et al. (Blood, 2005) previously demonstrated the critical nature of RBCs in NO physiology: they serve as the major intravascular stores of nitrite, which is eventually converted to NO, an important player in vasoregulation. The purpose of this study is to quantify the NO metabolites, nitrite and nitrate, in three blood components and evaluate their levels over time of storage. Blood obtained from 6 healthy volunteer donors was split into whole blood, leukoreduced, and non-leukoreduced packed RBCs and stored in polyvinyl chloride (PVC) bags for 42 days at 4°C. PVC bags were maintained in either room air or an argon chamber. Nitrite, nitrate, and SNO-Hb/nitrosyl-hemoglobin (HbNO) were measured using reductive gas-phase chemiluminescence. In all blood components, the nitrite and nitrate were detected in higher concentrations in RBCs than in the extracellular fluid compartment. Mean nitrite value immediately before storage was 152±13nM, but fell rapidly upon storage. Nitrite levels continued to decrease with storage time, while nitrate levels remained constant for the duration of storage. In the leukoreduced blood product, nitrite levels were 75±8nM on day 1 and 50±9nM by day 42; the concentration of nitrate in the leukoreduced blood product was 34±3uM on day 1 and 34±4uM on day 42. The nitrite levels in non-leukoreduced blood product were 76±12nM on day 1 and 37±7 by day 42; the nitrate concentration in the non-leukoreduced blood product was 35±3uM on day 1 and 32±0.4uM on day 42. In whole blood, nitrite levels were 64±11nM on day 1 and 44±9nM by day 42; the nitrate concentration was 47±2uM on day 1 and 43±6uM on day 42. SNO-Hb levels were very low in fresh blood and virtually undetectable after one day of storage. Interestingly, nitrite levels never reached zero. Enzyme inhibitors—L-NAME (nitric oxide synthase inhibitor), acetazolamide (carbonic anhydrase inhibitor), and oxypurinol (xanthine oxidase inhibitor)—did not lower nitrite levels enough to explain the remaining nitrite present in the PVC bags after 42 days. pH decreased slightly, while pO2 increased in all three components during storage; this is likely due to the diffusion of oxygen from room air into the PVC bags. Control experiments with saline showed an increase in nitrite levels, while nitrate levels remained stable over 42 days. When stored in an argon chamber, both blood and saline samples showed relatively lower nitrite levels than their room air counterparts. Thus, during blood bank storage, nitrite levels decrease in blood while nitrate levels remain stable. The diffusion of nitrogenous gases may explain why nitrite does not completely disappear under standard storage conditions. Our results suggest that most of the NO pathway is initially retained, but greater changes occur with prolonged storage. These measurements of NO derivatives may have implications for transfusion therapy, explaining some of the adverse effects seen with RBC transfusion and providing a foundation for enhancing blood preservation through improvement of storage practices.


Diagnosis ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 71-74 ◽  
Author(s):  
Vincenzo Roccaforte ◽  
Massimo Daves ◽  
Adawiya Alfreijat ◽  
Monica Riva ◽  
Maria Leitner ◽  
...  

AbstractSeveral factors that can lead to falsely elevated values of serum. Thrombocytosis is one of these factors, since breakage or activation of platelets during blood coagulation in vitro may lead to spurious release of potassium. The purpose of the study was to evaluate to which extent the platelet count may impact on potassium in both serum and plasma.The study population consisted of 42 subjects with platelets values comprised between 20 and 750×10Significant differences were found between potassium values in serum and in plasma. A significant correlation was also observed between serum potassium values and the platelet count in whole blood, but not with the age, sex, erythrocyte and leukocyte counts in whole blood. No similar correlation was noticed between plasma potassium and platelet count in whole blood. The frequency of hyperkalemia was also found to be higher in serum (20%) than in plasma (7%) in samples with a platelet count in whole blood >450×10The results of this study show that platelets in the biological samples may impact on potassium measurement when exceeding 450×10


2011 ◽  
Vol 2011 ◽  
pp. 1-3 ◽  
Author(s):  
Stephen I. Rifkin

Pseudohyperkalemia occurs occasionally in patients with extreme leukocytosis. Increased white blood cell fragility coupled with mechanical stress is felt to be causal. Serum and plasma potassium levels have been both associated with pseudohyperkalemia. Whole blood potassium determination will usually verify the correct diagnosis. It is important to diagnose this condition early so that patients are not inappropriately treated. Two patients with chronic lymphocytic leukemia and extreme leukocytosis are presented, one with pseudohyperkalemia and one with probable pseudohyperkalemia, and diagnostic considerations are discussed


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
John Porter

For reasons of time, this short talk will be confined to the optimal frequency, timing, indications and dosing of blood transfusion. Blood transfusion protocols in thalassaemia syndromes are more widely agreed (1) than for sickle disorders but questions still remain about optimal Hb levels, timing and frequency. In transfusion thalassaemia thalassaemias (TDT) , the purpose of blood transfusion is to maximise quality of life by correcting anaemia and suppressing ineffective erythropoiesis, whilst minimising the complications of the transfusion itself. Under-transfusion will limit growth and physical activity while increasing intramedullary and extra-medullary erythroid expansion. Over transfusion may cause unnecessary iron loading and increased risk of extra-hepatic iron deposition however. Although guidelines imply a ‘one size fits all’ approach to transfusion, in reality this is not be the case. Indeed a flexible approach crafted to the patient’s individual requirements and to the local availability of safe blood products is needed for optimal outcomes. For example in HbEβ thalassaemias, the right shifted oxygen dissociation curve tends to lead to better oxygen delivery per gram of Hb than in β thalassaemia intermedia with high Hb F. Patients with Eβthal therefore tend to tolerate lower Hb values than β thalassaemia intermedia. Guidelines aim to balance the benefits of oxygenation and suppression of extra-medullary expansion with those of excessive iron accumulation from overtransfusion. In an Italian TDT population, this balance was optimised with pre-transfusion values of 9.5-10.5g/dl (2). However this may not be universally optimal because of different levels of endogenous erythropoiesis with different genotypes in different populations. Recent work by our group (3) suggests that patients with higher levels of endogenous erythropoiesis, marked by higher levels of soluble transferrin receptors, at significantly lower risk of cardiac iron deposition than in those where endogenous erythropoiesis is less active, as would be the case in transfusion regimes achieving higher levels of pre-transfusion Hb. In sickle cell disorders, the variability in the phenotype between patients and also within a single patient at any given time means that the need for transfusion also varies. A consideration in sickle disorders, not usually applicable to thalassaemia syndromes, is that of exchange transfusion versus simple top up transfusion. Exchanges have the advantages of lower iron loading rates and more rapid lowering of HbS%. Disadvantages of exchange transfusion are of increased exposure to blood products with inherent increased risk of allo-immunisation or infection, requirement for better venous access for adequate blood flow, and requirements for team of operators capable of performing either manual or automated apheresis, often at short notice. Some indications for transfusion in sickle disorders are backed up by randomised controlled data, such as for primary and secondary stroke prevention, or prophylaxis of sickle related complications for high-risk operations (4). Others are widely practiced as standard of care without randomised data, such as treatment of acute sickle chest syndrome. Other indications for transfusion, not backed up by randomised studies, but still widely practiced in selected cases, include the management of pregnancy, leg ulceration or priapism and repeaed vaso-occlusive crises. Allo-immunisation is more common in sickle patients than in thalassaemia disorders and hyper-haemolysis is a rare but growing serious problem in sickle disorders. It is arguable that increased use of transfusion early in life, is indicated to decrease silent stroke rates and that early exposure to blood will decease red cell allo-immunisation rates.


Author(s):  
Susanna A. Curtis ◽  
Balbuena-Merle Raisa ◽  
John D. Roberts ◽  
Jeanne E. Hendrickson ◽  
Joanna Starrels ◽  
...  

1973 ◽  
Vol 38 (5) ◽  
pp. 482-484 ◽  
Author(s):  
STEPHE EURENIUS ◽  
ROBERT M. SMITH

1981 ◽  
Vol 7 (01) ◽  
pp. 25-32 ◽  
Author(s):  
Jerome Gottschall ◽  
Anthony Pisciotta ◽  
Joseph Darin ◽  
Clara Hussey ◽  
Richard Aster

Blood ◽  
2015 ◽  
Vol 125 (22) ◽  
pp. 3401-3410 ◽  
Author(s):  
Adetola A. Kassim ◽  
Najibah A. Galadanci ◽  
Sumit Pruthi ◽  
Michael R. DeBaun

Abstract Neurologic complications are a major cause of morbidity and mortality in sickle cell disease (SCD). In children with sickle cell anemia, routine use of transcranial Doppler screening, coupled with regular blood transfusion therapy, has decreased the prevalence of overt stroke from ∼11% to 1%. Limited evidence is available to guide acute and chronic management of individuals with SCD and strokes. Current management strategies are based primarily on single arm clinical trials and observational studies, coupled with principles of neurology and hematology. Initial management of a focal neurologic deficit includes evaluation by a multidisciplinary team (a hematologist, neurologist, neuroradiologist, and transfusion medicine specialist); prompt neuro-imaging and an initial blood transfusion (simple followed immediately by an exchange transfusion or only exchange transfusion) is recommended if the hemoglobin is >4 gm/dL and <10 gm/dL. Standard therapy for secondary prevention of strokes and silent cerebral infarcts includes regular blood transfusion therapy and in selected cases, hematopoietic stem cell transplantation. A critical component of the medical care following an infarct is cognitive and physical rehabilitation. We will discuss our strategy of acute and long-term management of strokes in SCD.


Sign in / Sign up

Export Citation Format

Share Document