scholarly journals Pattern of functional diversity along the elevation gradient in the dry evergreen Afromontane forest of Hararghe Highland, Southeast Ethiopia

2020 ◽  
Vol 28 (3) ◽  
pp. 257-264
Author(s):  
M. Teshome ◽  
Z. Asfaw ◽  
M. Mohammed

Understanding plant species distribution patterns along environmental gradients is fundamental to managing ecosystems, particularly when habitats are fragmented due to intensive human land use pressure. The variation pattern of functional diversity of plant communities along the elevation gradient in the Dindin dry evergreen Afromontane forest was tested. Fifty four plots of 20 x 20 m (400 m2) were established at 200 m intervals starting 2,300–2,900 m a. s. l. and woody species composition, and environmental variables were recorded. Nine functional diversity indices based on functional distances were employed to esimate functional diversity. The mixed effect model was used to determine the effect of elevation, aspect and slope on functional diversity indices. The results showed that functional diversity in communities varied greatly; functional diversity revealed a decrease with increasing elevation and a‘‘humped’’ pattern, with peak diversity appearing at middle elevation. Functional diversity was significantly correlated with elevation, slope, and aspect. Functional diversity was significantly correlated with species richness and evenness. Environmental filtering was important to the functional diversity pattern; the nine indices were all successful in the analysis of functional diversity in the plant community with different effectiveness, and modified functional attribute diversity, plot-based functional diversity, community based functional diversity, functional richness, and community weight mean of woody density performed better than the other four indices in this study.

2021 ◽  
Vol 11 ◽  
Author(s):  
Daniela Aros-Mualin ◽  
Sarah Noben ◽  
Dirk N. Karger ◽  
César I. Carvajal-Hernández ◽  
Laura Salazar ◽  
...  

Functional traits determine how species interact with their abiotic and biotic environment. In turn, functional diversity describes how assemblages of species as a whole are adapted to their environment, which also determines how they might react to changing conditions. To fully understand functional diversity, it is fundamental to (a) disentangle the influences of environmental filtering and species richness from each other, (b) assess if the trait space saturates at high levels of species richness, and (c) understand how changes in species numbers affect the relative importance of the trait niche expansion and packing. In the present study, we determined functional diversity of fern assemblages by describing morphological traits related to resource acquisition along four tropical elevational transects with different environmental conditions and species richness. We used several functional diversity indices and their standardized effect size to consider different aspects of functional diversity. We contrasted these aspects of functional diversity with climate data and species richness using linear models and linear mixed models. Our results show that functional morphological trait diversity was primarily driven by species richness and only marginally by environmental conditions. Moreover, increasing species richness contributed progressively to packing of the morphological niche space, while at the same time decreasing morphological expansion until a saturation point was reached. Overall, our findings suggest that the density of co-occurring species is the fundamental driving force of morphological niche structure, and environmental conditions have only an indirect influence on fern resource acquisition strategies.


2019 ◽  
Vol 5 (12) ◽  
pp. eaaw8114 ◽  
Author(s):  
Sandra M. Durán ◽  
Roberta E. Martin ◽  
Sandra Díaz ◽  
Brian S. Maitner ◽  
Yadvinder Malhi ◽  
...  

Spatially continuous data on functional diversity will improve our ability to predict global change impacts on ecosystem properties. We applied methods that combine imaging spectroscopy and foliar traits to estimate remotely sensed functional diversity in tropical forests across an Amazon-to-Andes elevation gradient (215 to 3537 m). We evaluated the scale dependency of community assembly processes and examined whether tropical forest productivity could be predicted by remotely sensed functional diversity. Functional richness of the community decreased with increasing elevation. Scale-dependent signals of trait convergence, consistent with environmental filtering, play an important role in explaining the range of trait variation within each site and along elevation. Single- and multitrait remotely sensed measures of functional diversity were important predictors of variation in rates of net and gross primary productivity. Our findings highlight the potential of remotely sensed functional diversity to inform trait-based ecology and trait diversity-ecosystem function linkages in hyperdiverse tropical forests.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 546
Author(s):  
Alexis Joseph Rodríguez-Romero ◽  
Axel Eduardo Rico-Sánchez ◽  
Jacinto Elías Sedeño-Díaz ◽  
Eugenia López-López

The analysis of functional diversity has shown to be more sensitive to the effects of natural and anthropogenic disturbances on the assemblages of aquatic macroinvertebrates than the classical analyses of structural ecology. However, this ecological analysis perspective has not been fully explored in tropical environments of America. Protected Natural Areas (PNAs) such as biosphere reserves can be a benchmark regarding structural and functional distribution patterns worldwide, so the characterization of the functional space of biological assemblages in these sites is necessary to promote biodiversity conservation efforts. Our work characterized the multidimensional functional space of the macroinvertebrate assemblages from an ecosystemic approach by main currents, involving a total of 15 study sites encompassing different impact and human influence scenarios, which were monitored in two contrasting seasons. We calculated functional diversity indices (dispersion, richness, divergence, evenness, specialization, and originality) from biological and ecological traits of the macroinvertebrate assemblages and related these indices to the physicochemical characteristics of water and four environmental indices (Water Quality Index, habitat quality, Normalized Difference Vegetation Index, and vegetation cover and land use). Our results show that the indices of functional richness, evenness, and functional specialization were sensitive to disturbance caused by salinization, concentration of nutrients and organic matter, and even to the occurrence of a forest fire in the reserve during one of the sampling seasons. These findings support the conclusion that the changes and relationships between the functional diversity indices and the physicochemical parameters and environmental indices considered were suitable for evaluating the ecological conditions within the reserve.


Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 493
Author(s):  
Vanessa Velásquez-Trujillo ◽  
Juan F. Betancurt-Grisales ◽  
Angela M. Vargas-Daza ◽  
Carlos E. Lara ◽  
Fredy A. Rivera-Páez ◽  
...  

Agricultural systems have increased in extension and intensity worldwide, altering vertebrate functional diversity, ecosystem functioning, and ecosystemic services. However, the effects of open monoculture crops on bird functional diversity remain little explored, particularly in highly biodiverse regions such as the tropical Andes. We aim to assess the functional diversity differences of bird guilds between monoculture crops (coffee, cocoa, and citrus) and secondary forests. We use four functional diversity indices (Rao Q, Functional Richness, Functional Evenness, and Functional Divergence) related to relevant morphological, life history, and behavioral traits. We find significant differences in functional diversity between agroecosystem and forest habitats. Particularly, bird functional diversity is quite homogeneous among crop types. Functional traits related to locomotion (body weight, wing-chord length, and tail length), nest type (closed), and foraging strata (canopy and understory) are dominant at the agroecosystems. The bird assemblages found at the agroecosystems are more homogeneous in terms of functional diversity than those found at the secondary forests, as a result of crop structure and management. We recommend promoting more diverse agroecosystems to enhance bird functional diversity and reduce their effects on biodiversity.


CERNE ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 75-84
Author(s):  
Jin-Tun Zhang ◽  
Xiaohang Bai ◽  
Dan Shao

ABSTRACT The interaction of diversity with environmental gradients is an important topic in ecology. This study investigated the pattern of change in functional diversity in forest communities along an altitudinal gradient in Yunmeng Mountain National Forest Park, China. Forty-two quadrats measuring 10 x 10 m in the forest communities were set up along this altitudinal gradient; plant species, traits and environmental variables were measured and recorded. Six functional diversity indices, namely, Modified functional attribute diversity (MFAD), Functional diversity plot-based dendrogram index (FDp), Functional diversity community-based dendrogram index (FDc), Functional evenness (FEve), Functional divergence (FDiv) and Functional dispersion (FDis), were used to calculate functional diversity. The results showed that functional diversity varied greatly in forest communities in the Yunmeng Mountain Forest Park. Functional diversity was significantly correlated with elevation and slope position and somewhat correlated with soil depth. Functional diversity increased with an increase in the elevation and decreased as the slope position changed from valley bottom to hill ridge. Functional diversity was closely related to species richness. The six functional diversity indices were all applicable to functional diversity studies of forest communities.


Ecology ◽  
2008 ◽  
Vol 89 (8) ◽  
pp. 2290-2301 ◽  
Author(s):  
Sébastien Villéger ◽  
Norman W. H. Mason ◽  
David Mouillot

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jürgen Homeier ◽  
Tabea Seeler ◽  
Kerstin Pierick ◽  
Christoph Leuschner

AbstractScreening species-rich communities for the variation in functional traits along environmental gradients may help understanding the abiotic drivers of plant performance in a mechanistic way. We investigated tree leaf trait variation along an elevation gradient (1000–3000 m) in highly diverse neotropical montane forests to test the hypothesis that elevational trait change reflects a trend toward more conservative resource use strategies at higher elevations, with interspecific trait variation decreasing and trait integration increasing due to environmental filtering. Analysis of trait variance partitioning across the 52 tree species revealed for most traits a dominant influence of phylogeny, except for SLA, leaf thickness and foliar Ca, where elevation was most influential. The community-level means of SLA, foliar N and Ca, and foliar N/P ratio decreased with elevation, while leaf thickness and toughness increased. The contribution of intraspecific variation was substantial at the community level in most traits, yet smaller than the interspecific component. Both within-species and between-species trait variation did not change systematically with elevation. High phylogenetic diversity, together with small-scale edaphic heterogeneity, cause large interspecific leaf trait variation in these hyper-diverse Andean forests. Trait network analysis revealed increasing leaf trait integration with elevation, suggesting stronger environmental filtering at colder and nutrient-poorer sites.


2012 ◽  
Vol 24 (5) ◽  
pp. 794-806 ◽  
Author(s):  
Norman W.H. Mason ◽  
Francesco de Bello ◽  
David Mouillot ◽  
Sandrine Pavoine ◽  
Stéphane Dray

Sign in / Sign up

Export Citation Format

Share Document