scholarly journals Destruction of toluene and xylene by sulfatе-reducing bacteria

2019 ◽  
Vol 30 (2) ◽  
pp. 95-100 ◽  
Author(s):  
N. S. Verkholiak ◽  
T. B. Peretyatko

As a result of human activity aromatic hydrocarbons enter the environment in large quantities, contaminating it. Dropping of insufficiently treated wastewater drains considerably decrease the quality of water. Quite effective biological methods of purification of contaminated environment are the usage of microorganisms. Prospective microorganisms for sewage treatment are sulfate-reducing bacteria. The purpose of the work was to investigate the ability of sulfate-reducing bacteria to use xylene and toluene as a source of carbon under different cultivation conditions.  The study objects were sulfate-reducing bacteria Desulfotomaculum AR1 and Desulfovibrio desulfuricans Ya-11. The biomass of bacteria was determined turbidimetrically, the content of sulfate ion and hydrogen sulfide – photometrically in the culture fluid. The content of fumarate was determined by the method of high-performance liquid chromatography. The ability of Desulfotomaculum AR1 and D. desulfuricans Ya-11 bacteria to use toluene and xylene as the sole source of carbon and energy has been established. In the toluene environment, a better growth of bacteria was observed. A comparison was made between the efficiency of the reduction of sulfate ions and the growth of bacteria in the control medium and the medium with aromatic compounds. The efficiency of sulfate ions reduction was sufficiently high in the control medium, whereas in the toluene/xylene media the efficiency of sulfate utilization and hydrogen sulfide accumulation was lower compared to the control parameters. The growth of Desulfotomaculum AR1 and D. desulfuricans Ya-11 sulfate-reducing bacteria was investigated in xylene and toluene media in the presence/absence of fumarate. According to the results of the studies, the best growth of the tested bacteria was observed in the medium with aromatic compounds in the presence of fumarate and sulfate ion. Efficiency of use of fumarate in the medium with toluene with bacteria Desulfotomaculum AR1 was more than 90 %. Fumarate can be used by sulfate-reducing bacteria as a source of carbon, donor and acceptor of electrons. Fumarate is most likely to inhibit sulfate reduction in Desulfotomaculum AR1 and D. desulfuricans Ya-11 bacteria, as indicated by studies showing that sulfate reduction efficiency in lactate, fumarate, and sulfate ion media was half that of control. Sulfate-reducing bacteria are capable to anaerobically degrade aromatic hydrocarbons in the presence of sulfate ions as terminal electron acceptors. The ability of sulfate-reducing bacteria Desulfotomaculum AR1 and D. desulfuricans Ya-11 to use the aromatics of the BTEХ – toluene, xylene and sulfate-ions, makes them promising at the biological purification step of contaminated wastewater from these pollutants.

2016 ◽  
Vol 869 ◽  
pp. 699-704
Author(s):  
E.S.L. Vasconcelos ◽  
Edkarlla Sousa Dantas de Oliveira ◽  
M.A.G.A. Lima ◽  
M. Montoya ◽  
Cezar Henrique Gonzalez ◽  
...  

Articles report that the sulphate reducing bacteria (SRB) are the main micro-organisms related to cases of corrosion. They reduce the sulfate ion resulting in the production of sulfide, disulfide and hydrogen sulfide, potential agents of corrosion of ferrous materials. This study investigated the action of sulfate-reducing bacteria on corrosion test specimens with welded joint of API 5L X80 steel in the presence of seawater. The samples were exposed to sea and sterilized water was then added to BRS. Microorganisms were quantified periodically calculated the corrosion rate and weight loss, and the surfaces of the samples analyzed by light microscopy.


2015 ◽  
Vol 6 (1) ◽  
pp. 40-44
Author(s):  
G. І. Zvir ◽  
O. М. Moroz ◽  
S. O. Hnatush

Objects of the study were sulfate-reducing bacteria Desulfovibrio desulfuricans ІМV К-6, isolated from Yavorivske lakе. This strain is kept in the collection of microorganisms at the Department of Microbiology of Ivan Franko National University. Bacteria were grown in the Kravtsov-Sorokin’s liquid medium with the following composition (g/l): Na2SO4 × 10H2O – 0.5, NaH2PO4 – 0.3, K2HPO4 – 0.5, (NH4)2SO4 – 0.2, MgSO4 × 7H2O – 0.1, C3H5O3Na – 2.0. The bacteria were grown for 10 days at 30 °C under anaerobic conditions. In order to study the sensitivity of the sulfate reducing bacteria to action of Uragan and Raundup herbicides, the cells of D. desulfuricans ІМV К-6 were grown at the concentrations of herbicides as follows: 0,28 mМ, 2,8 mМ (concentration recommended for use) and 5,6 mM. Biomass was determined by photometric method. Concentration of hydrogen sulfide in the culture medium was determined by photo-colorimetric method. Concentration of sulfate-ions in the medium was determined by turbidimetric method. Capacity of sulfate reducing bacteria D. desulfuricans ІМV K-6 to grow, reducing sulfates to hydrogen sulfide upon influence of Uragan and Raundup herbicides was studied. Accumulation of bacterial biomass in the control and upon influence of herbicides was the highest on the fourth-sixth day of cultivation, and after that the stationary growth phase began. It was shown that sulfate reducing bacteria upon influence of herbicides grew more intensively compared with the control. It was discovered that the level of biomass changed depending on the increasing concentration of Uragan or Raundup herbicides in the medium. Sulfate reducing bacteria D. desulfuricans ІМV K-6 could reduce sulfates to hydrogen sulfide in the presence of sulfates and organic compounds in the medium (dissimilatory sulfate reduction). Stimulatory influence of Uragan and Raundup on the dissimilatory sulfate reduction process of D. desulfuricans ІМВ К-6 has been discovered. The formation of hydrogen sulfide correlates with the usage of sulfatе ions. The capacity of sulfate reducing bacteria D. desulfuricans ІМV K-6 to grow, reducing sulfate ions to hydrogen sulfide upon influence of Uragan and Raundup may be caused by presence of inert components (sulfates) in these herbicides that can be used by microorganisms as electron acceptors during sulfate respiration. 


The Analyst ◽  
2015 ◽  
Vol 140 (6) ◽  
pp. 1772-1786 ◽  
Author(s):  
Zhi Guo ◽  
Guiqiu Chen ◽  
Guangming Zeng ◽  
Zhongwu Li ◽  
Anwei Chen ◽  
...  

The development of H2S fluorescence-sensing strategies and their potential applications in the determination of sulfate-reducing bacteria activity.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qigen Deng ◽  
Tao Zhang ◽  
Fajun Zhao ◽  
Hao Wang ◽  
Jingping Yin

The salinity, chemical properties, and migration characteristics of groundwater in coal measures are the key factors that affect the generation, migration, and reservoir of hydrogen sulfide (H2S) in low-rank coal seams. Taking the Jurassic coal and rock strata in the southeastern margin of the Junggar basin as the research object, according to the hydrogeological characteristics of the coal measures, the region is divided into 4 hydrogeological units. The coalbed methane contains a large number of secondary biogas. Along the direction of groundwater runoff, the salinity and the pH value increase gradually. The salinity in the hydrogeological units is low; it is not conducive to the propagation of sulfate-reducing bacteria and the formation of hydrogen sulfide of the Houxia, the south of Manasi River, and Hutubi and Liuhuangou area, the western region of the Miquan. The high salinity center and depressions of low water level (hydrodynamic stagnation zone) in the hydrogeological unit of the Liuhuanggou and the Miquan are the main areas for the production and enrichment of H2S in the low-rank coal. The high salinity in water is formed by infiltration, runoff, and drought evaporation. At the same time, the deep confined water environment closed well; in conditions of hydrocarbon-rich, under the action of sulfate-reducing bacteria, bacterial sulfate reduction will occur and hydrogen sulfide formed. According to the circulation characteristics of water bearing H2S in the region, imbricate and single bevel two kind generation and enrichment mode of hydrogen sulfide under the action of hydrodynamic control. The solubility of hydrogen sulfide in pure water and solutions of NaCl and Na2SO4 with different molar concentrations was calculated. The H2S solubility of groundwater in coal measures of 4 hydrogeological units was estimated.


1992 ◽  
Vol 40 (5) ◽  
pp. 593-600 ◽  
Author(s):  
M. A. M. Reis ◽  
J. S. Almeida ◽  
P. C. Lemos ◽  
M. J. T. Carrondo

2020 ◽  
Vol 11 (2) ◽  
pp. 278-282
Author(s):  
N. S. Verkholiak ◽  
T. B. Peretyatko ◽  
A. A. Halushka

The usage of microorganisms to clean the environment from xenobiotics, in particular chlorine-containing ones, is a promising method of detoxifying the contaminated environment. Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11, isolated from Yavoriv Lake, and Desulfotomaculum AR1, isolated from the Lviv sewage treatment system, are able to grow under conditions of environmental contamination by aromatic compounds and chlorine-containing substances. Due to their high redox potential, chlorate and perchlorate ions can be ideal electron acceptors for the metabolism of microorganisms. To test the growth of the tested microorganisms under the influence of perchlorate ions, bacteria were cultured in modified Postgate C medium with ClO4–. Biomass was determined turbidimetrically, the content of sulfate ions and hydrogen sulfide – photoelectrocolorimetrically, the content of perchlorate ions – permanganatometrically. The study of the ability of sulfate-reducing bacteria Desulfotomaculum AR1 and D. desulfuricans Ya-11 to grow in a medium with perchlorate ions as electron acceptors showed the inhibitory effect of ClO4– on sulfate ion reduction by bacteria. Bacteria Desulfotomaculum AR1 and D. desulfuricans Ya-11 are able to grow in environments with aromatic hydrocarbons, in particular toluene. The possibility of the growth of sulfate-reducing bacteria in the presence of toluene as an electron donor and perchlorate ions as an electron acceptor was investigated. The efficiency of perchlorate ion utilization by sulfate-reducing bacteria Desulfotomaculum AR1 and D. desulfuricans Ya-11 was about 90 %. The effect of molybdenum on the reduction of perchlorate ions by Desulfotomaculum AR1 is shown in the paper. Immobilization of bacteria Desulfotomaculum AR1 and D. desulfuricans Ya-11 was carried out in 3% agar and on wood chips. The ability of bacteria, immobilized on these media, to purify the aqueous medium from perchlorate ions was investigated. Reduction of perchlorate ions is more efficiently performed by cells of Desulfotomaculum AR1 and D. desulfuricans Ya-11 bacteria immobilized in agar than on wood chips. Sulfate-reducing bacteria Desulfotomaculum AR1 and D. desulfuricans Ya-11 are able to use perchlorate ions as electron acceptors, purifying the polluted aquatic environment from these pollutants.


Sign in / Sign up

Export Citation Format

Share Document