scholarly journals Dipole defect decay and dielectric relaxation in Na0.5Bi0.5TiO3 single crystal

2020 ◽  
Vol 28 (2) ◽  
pp. 87-90
Author(s):  
V. M. Sidak ◽  
M. P. Trubitsyn

Electrical properties of heat treated in air and in vacuum Na0.5Bi0.5TiO3 single crystals were measured in AC field (f=1 kHz) in the range 300–800 K. Relaxation anomaly of permittivity ε(T) is observed near 700 K for the crystal heat treated in vacuum. It is argued that processing in vacuum generates the defect dipoles, which give rise to the dielectric anomaly. The character of the ε(T) experimental dependence is quite different from the predictions of Debye model. The non-Debye behavior of ε(T) is explained by the concentration decrease of dipole defects due to their thermal destruction at high temperatures. In addition, the ε(T) anomaly could be described more precisely by taking into consideration configurational and vibrational entropy of the subsystem of dipole defects. The observed dielectric relaxation is presumably attributed to reorientations of the dipole moments of Ti3+–VO centers.

2018 ◽  
Vol 26 (2) ◽  
pp. 63-66
Author(s):  
I. P. Volnyanskaya ◽  
M. P. Trubitsyn ◽  
D. M. Volnianskii ◽  
D. S. Bondar

Electrical properties of Pb2MoO5 single crystal were studied in AC field (f=1 kHz) after irradiation with UV light (290 K). It was found that UV irradiation caused appearance of maximums on permittivity ε and conductivity σ temperature dependences, which were observed around 530 K. The anomalies of ε and σ vanished after annealing at 700 K and could be restored by subsequent UV irradiation performed at room temperature. The magnitude of ε and σ peaks increased for higher exposition time. Above 600 K conductivity σ was practically independent on irradiation. It is proposed that photoelectrons induced by UV light, are trapped by Mo located -within the oxygen tetrahedrons with vacancy VO in one of the vertexes. The dipole moments of (MoO3) groups reorient at VO hopping through the tetrahedron vertexes. Annealing at 700 K thermally decomposes (MoO3)- complexes. For T>600 K behavior of σ(T) is determined by conduction currents and nearly insensitive to UV irradiation. At high temperatures the photoelectrons do not contribute to conductivity since they are bound in (MoO3)- centers, recombine with holes or re-captured by more deep traps.


2005 ◽  
Vol 86 (15) ◽  
pp. 152907 ◽  
Author(s):  
Jie Wang ◽  
X. G. Tang ◽  
H. L. W. Chan ◽  
C. L. Choy ◽  
Haosu Luo

2011 ◽  
Vol 131 (5) ◽  
pp. 395-400 ◽  
Author(s):  
Toru Oi ◽  
Katsuyoshi Shinyama ◽  
Shigetaka Fujita

2021 ◽  
pp. 126259
Author(s):  
Pengfei Yu ◽  
Pandeng Gao ◽  
Tingquan Shao ◽  
Wenfei Liu ◽  
Biru Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document